2,756 research outputs found

    Knowing what you know in brain segmentation using Bayesian deep neural networks

    Full text link
    In this paper, we describe a Bayesian deep neural network (DNN) for predicting FreeSurfer segmentations of structural MRI volumes, in minutes rather than hours. The network was trained and evaluated on a large dataset (n = 11,480), obtained by combining data from more than a hundred different sites, and also evaluated on another completely held-out dataset (n = 418). The network was trained using a novel spike-and-slab dropout-based variational inference approach. We show that, on these datasets, the proposed Bayesian DNN outperforms previously proposed methods, in terms of the similarity between the segmentation predictions and the FreeSurfer labels, and the usefulness of the estimate uncertainty of these predictions. In particular, we demonstrated that the prediction uncertainty of this network at each voxel is a good indicator of whether the network has made an error and that the uncertainty across the whole brain can predict the manual quality control ratings of a scan. The proposed Bayesian DNN method should be applicable to any new network architecture for addressing the segmentation problem.Comment: Submitted to Frontiers in Neuroinformatic

    Rectangular Wilson Loops at Large N

    Full text link
    This work is about pure Yang-Mills theory in four Euclidean dimensions with gauge group SU(N). We study rectangular smeared Wilson loops on the lattice at large N and relatively close to the large-N transition point in their eigenvalue density. We show that the string tension can be extracted from these loops but their dependence on shape differs from the asymptotic prediction of effective string theory.Comment: 47 pages, 21 figures, 8 table

    On the Inability of Markov Models to Capture Criticality in Human Mobility

    Get PDF
    We examine the non-Markovian nature of human mobility by exposing the inability of Markov models to capture criticality in human mobility. In particular, the assumed Markovian nature of mobility was used to establish a theoretical upper bound on the predictability of human mobility (expressed as a minimum error probability limit), based on temporally correlated entropy. Since its inception, this bound has been widely used and empirically validated using Markov chains. We show that recurrent-neural architectures can achieve significantly higher predictability, surpassing this widely used upper bound. In order to explain this anomaly, we shed light on several underlying assumptions in previous research works that has resulted in this bias. By evaluating the mobility predictability on real-world datasets, we show that human mobility exhibits scale-invariant long-range correlations, bearing similarity to a power-law decay. This is in contrast to the initial assumption that human mobility follows an exponential decay. This assumption of exponential decay coupled with Lempel-Ziv compression in computing Fano's inequality has led to an inaccurate estimation of the predictability upper bound. We show that this approach inflates the entropy, consequently lowering the upper bound on human mobility predictability. We finally highlight that this approach tends to overlook long-range correlations in human mobility. This explains why recurrent-neural architectures that are designed to handle long-range structural correlations surpass the previously computed upper bound on mobility predictability

    Infinite N phase transitions in continuum Wilson loop operators

    Full text link
    We define smoothed Wilson loop operators on a four dimensional lattice and check numerically that they have a finite and nontrivial continuum limit. The continuum operators maintain their character as unitary matrices and undergo a phase transition at infinite N reflected by the eigenvalue distribution closing a gap in its spectrum when the defining smooth loop is dilated from a small size to a large one. If this large N phase transition belongs to a solvable universality class one might be able to calculate analytically the string tension in terms of the perturbative Lambda-parameter. This would be achieved by matching instanton results for small loops to the relevant large-N-universal function which, in turn, would be matched for large loops to an effective string theory. Similarities between our findings and known analytical results in two dimensional space-time indicate that the phase transitions we found only affect the eigenvalue distribution, but the traces of finite powers of the Wilson loop operators stay smooth under scaling.Comment: 31 pages, 9 figures, typos and references corrected, minor clarifications adde

    Active Mean Fields for Probabilistic Image Segmentation: Connections with Chan-Vese and Rudin-Osher-Fatemi Models

    Get PDF
    Segmentation is a fundamental task for extracting semantically meaningful regions from an image. The goal of segmentation algorithms is to accurately assign object labels to each image location. However, image-noise, shortcomings of algorithms, and image ambiguities cause uncertainty in label assignment. Estimating the uncertainty in label assignment is important in multiple application domains, such as segmenting tumors from medical images for radiation treatment planning. One way to estimate these uncertainties is through the computation of posteriors of Bayesian models, which is computationally prohibitive for many practical applications. On the other hand, most computationally efficient methods fail to estimate label uncertainty. We therefore propose in this paper the Active Mean Fields (AMF) approach, a technique based on Bayesian modeling that uses a mean-field approximation to efficiently compute a segmentation and its corresponding uncertainty. Based on a variational formulation, the resulting convex model combines any label-likelihood measure with a prior on the length of the segmentation boundary. A specific implementation of that model is the Chan-Vese segmentation model (CV), in which the binary segmentation task is defined by a Gaussian likelihood and a prior regularizing the length of the segmentation boundary. Furthermore, the Euler-Lagrange equations derived from the AMF model are equivalent to those of the popular Rudin-Osher-Fatemi (ROF) model for image denoising. Solutions to the AMF model can thus be implemented by directly utilizing highly-efficient ROF solvers on log-likelihood ratio fields. We qualitatively assess the approach on synthetic data as well as on real natural and medical images. For a quantitative evaluation, we apply our approach to the icgbench dataset

    Exposing strangeness: projections for kaon electromagnetic form factors

    Full text link
    A continuum approach to the kaon and pion bound-state problems is used to reveal their electromagnetic structure. For both systems, when used with parton distribution amplitudes appropriate to the scale of the experiment, Standard Model hard-scattering formulae are accurate to within 25% at momentum transfers Q2≈8 Q^2 \approx 8\,GeV2^2. There are measurable differences between the distribution of strange and normal matter within the kaons, e.g. the ratio of their separate contributions reaches a peak value of 1.51.5 at Q2≈6 Q^2 \approx 6\,GeV2^2. Its subsequent Q2Q^2-evolution is accurately described by the hard scattering formulae. Projections for kaon and pion form factors at timelike momenta beyond the resonance region are also presented. These results and projections should prove useful in planning next-generation experiments.Comment: 7 pages, 4 figure
    • …
    corecore