In this paper, we describe a Bayesian deep neural network (DNN) for
predicting FreeSurfer segmentations of structural MRI volumes, in minutes
rather than hours. The network was trained and evaluated on a large dataset (n
= 11,480), obtained by combining data from more than a hundred different sites,
and also evaluated on another completely held-out dataset (n = 418). The
network was trained using a novel spike-and-slab dropout-based variational
inference approach. We show that, on these datasets, the proposed Bayesian DNN
outperforms previously proposed methods, in terms of the similarity between the
segmentation predictions and the FreeSurfer labels, and the usefulness of the
estimate uncertainty of these predictions. In particular, we demonstrated that
the prediction uncertainty of this network at each voxel is a good indicator of
whether the network has made an error and that the uncertainty across the whole
brain can predict the manual quality control ratings of a scan. The proposed
Bayesian DNN method should be applicable to any new network architecture for
addressing the segmentation problem.Comment: Submitted to Frontiers in Neuroinformatic