58 research outputs found

    Measurement, Modeling and Suppression of Substrate Noise in Wide Band Mixed-signal ICs

    Get PDF

    Substrate noise analysis and techniques for mitigation in mixed-signal RF systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 151-158).Mixed-signal circuit design has historically been a challenge for several reasons. Parasitic interactions between analog and digital systems on a single die are one such challenge. Switching transients induced by digital circuits inject noise into the common substrate creating substrate noise. Analog circuits lack the large noise margins of digital circuits, thus making them susceptible to substrate voltage variations. This problem is exacerbated at higher frequencies as the effectiveness of standard isolation technique diminishes considerably. Historically, substrate noise was not a problem because each system was fabricated in its own package shielding it from such interactions. The work in this thesis spans all areas of substrate noise: generation, propagation, and reception. A set of guidelines in designing isolation structures was developed to assist designers in optimizing these structures for a particular application. Furthermore, the effect of substrate noise on two key components of the RF front end, the voltage controlled oscillator (VCO) and the low noise amplifier (LNA), was analyzed. Finally, a CAD tool (SNAT) was developed to efficiently simulate large digital designs to determine substrate noise performance.(cont.) Existing techniques have prohibitively long simulation times and are only suitable for final verification. Determination of substrate noise coupling during the design phase would be extremely beneficial to circuit designers who can incorporate the effect of the noise and re-design accordingly before fabrication. This would reduce the turn around time for circuits and prevent costly redesign. SNAT can be used at any stage of the design cycle to accurately predict (less than 12% error when compared to measurements) the substrate noise performance of any digital circuit with a large degree of computational efficiency.by Nisha Checka.Ph.D

    DESIGN, COMPACT MODELING AND CHARACTERIZATION OF NANOSCALE DEVICES

    Get PDF
    Electronic device modeling is a crucial step in the advancement of modern nanotechnology and is gaining more and more interest. Nanoscale complementary metal oxide semiconductor (CMOS) transistors, being the backbone of the electronic industry, are pushed to below 10 nm dimensions using novel manufacturing techniques including extreme lithography. As their dimensions are pushed into such unprecedented limits, their behavior is still captured using models that are decades old. Among many other proposed nanoscale devices, silicon vacuum electron devices are regaining attention due to their presumed advantages in operating at very high power, high speed and under harsh environment, where CMOS cannot compete. Another type of devices that have the potential to complement CMOS transistors are nano-electromechanical systems (NEMS), with potential applications in filters, stable frequency sources, non-volatile memories and reconfigurable and neuromorphic electronics

    Extension of 0.18µm standard CMOS technology operating range to the microwave and millimetre-wave regime

    Get PDF
    There is an increasing interest in building millimetre-wave circuits on standard digital complementary metal oxide semiconductor (CMOS) technology for applications such as wireless local area networks (WLAN), automotive radar and remote sensing. This stems from the existing low cost, well-developed, high yield infrastructure for mass production. The overall aim of this thesis is to extend the operating range of 0.18um standard logic CMOS technology to millimetre-wave regime. To this end, microwave and millimetre-wave design, optimisation and modelling methodologies for active and passive devices and low noise circuit implementation are described. As part of the evaluation, new systematic and modular ways of making high performance passive and active devices such as spiral inductors, slow-wave coplanar waveguide (CPW) transmission lines, comb capacitors and NMOS transistors are proposed, designed, simulated, fabricated, modelled and analysed. Small-signal and noise de-embedding techniques are developed and verified up to 110 GHz, providing an increased accuracy in the device model, leading to a robust design at millimetre-wave frequencies. Reduced substrate losses resulting in increased quality factor are presented for optimised spiral inductor designs, featuring patterned floating shield (PFS), enabling improved matching network and a reduced chip area. Based on the proposed shielded slow-wave CPW, both the line attenuation and structure length are decreased, resulting in a more compact and simplified circuit design. An optimised transistor design, aimed at reducing the layout parasitic effects, was realised. The optimisation led to a significant improvement in the gain and noise performance of the transistor, extending its operation beyond the cut-off frequency (ft). By combining all the optimised components, low noise amplifiers (LNAs) operating at 25 GHz and 40 GHz were implemented and compared. These LNAs demonstrate state-of-the-art performance, with the 40 GHz LNA exhibiting the highest gain and lowest noise performance of any LNA reported using 0.18um CMOS technology. On the other hand, the 25 GHz LNA showed a comparable performance to other reported results in literature using several topologies implemented in CMOS technology. These findings will provide a framework for expansion to smaller CMOS technology nodes with the view of extending to sub millimetre-wave frequencies

    High Performance LNAs and Mixers for Direct Conversion Receivers in BiCMOS and CMOS Technologies

    Get PDF
    The trend in cellular chipset design today is to incorporate support for a larger number of frequency bands for each new chipset generation. If the chipset also supports receiver diversity two low noise amplifiers (LNAs) are required for each frequency band. This is however associated with an increase of off-chip components, i.e. matching components for the LNA inputs, as well as complex routing of the RF input signals. If balanced LNAs are implemented the routing complexity is further increased. The first presented work in this thesis is a novel multiband low noise single ended LNA and mixer architecture. The mixer has a novel feedback loop suppressing both second order distortion as well as DC-offset. The performance, verified by Monte Carlo simulations, is sufficient for a WCDMA application. The second presented work is a single ended multiband LNA with programmable integrated matching. The LNA is connected to an on-chip tunable balun generating differential RF signals for a differential mixer. The combination of the narrow band input matching and narrow band balun of the presented LNA is beneficial for suppressing third harmonic downconversion of a WLAN interferer. The single ended architecture has great advantages regarding PCB routing of the RF input signals but is on the other hand more sensitive to common mode interferers, e.g. ground, supply and substrate noise. An analysis of direct conversion receiver requirements is presented together with an overview of different LNA and mixer architectures in both BiCMOS and CMOS technology
    corecore