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ABSTRACT 

Shen, Yanfei. Ph.D., Purdue University, December 2016. Design, Compact Modeling and 

Characterization of Nanoscale Devices. Major Professor: Saeed Mohammadi. 

 

 

 

Electronic device modeling is a crucial step in the advancement of modern 

nanotechnology and is gaining more and more interest. Nanoscale complementary metal 

oxide semiconductor (CMOS) transistors, being the backbone of the electronic industry, 

are pushed to below 10 nm dimensions using novel manufacturing techniques including 

extreme lithography. As their dimensions are pushed into such unprecedented limits, their 

behavior is still captured using models that are decades old.  Among many other 

proposed nanoscale devices, silicon vacuum electron devices are regaining attention due 

to their presumed advantages in operating at very high power, high speed and under harsh 

environment, where CMOS cannot compete. Another type of devices that have the 

potential to complement CMOS transistors are nano-electromechanical systems (NEMS), 

with potential applications in filters, stable frequency sources, non-volatile memories and 

reconfigurable and neuromorphic electronics.  

In this work, a compact scalable nonlinear RF MOSFET model for NMOS transistors 

in a standard 45nm CMOS SOI technology is presented. This model employs a simple 

nonlinear core known as the Virtual Source (VS) model and adds parasitic elements 
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around it to accurately simulate the RF performance of NMOS transistors up to 40GHz. 

The traditional long-channel thermal noise model is replaced by a combined shot-thermal 

noise model for the first time to accurately predict the noise behavior of these short-

channel transistors up to 40GHz. The model parameters are extracted from DC, S-

parameter and noise measurements across different bias conditions and for different 

device dimensions to achieve a scalable nonlinear model.  

In addition to CMOS modeling, silicon nanowire field emitter arrays, which yield 

large current densities with high reliability and low turn-on voltages are designed, and 

implemented. An electro-thermal simulation is performed to obtain the parameters that 

optimize the device performance. The silicon emitter arrays are fabricated using a self-

assembled technique for the first time. Silicon nanowire FEAs fabricated with this 

technique are dense (~75% fill factor), highly repeatable and reproducible, and low-cost. 

An ungated two-terminal device and a gated vacuum transistor are fabricated in this 

technology and are characterized.  

Various CMOS integrated NEMS resonators are fabricated and characterized. A 

compact model for double-clamped CMOS Silicon on Insulator (SOI) NEMS devices is 

constructed and implemented. The model covers both linear and nonlinear characteristics 

of nanoscale single gated and double gated resonators made of silicon beam of different 

sizes and gaps. This model can also capture the hardening or softening effects, Duffing-

type response and hysteresis responses, that are observed in such devices.  
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CHAPTER 1. INTRODUCTION 

1.1 Introduction  

For novel nanoscale devices, integration with CMOS is an essential step that facilitates 

such advanced devices to transition from research-grade technology into the consumer 

market. There are generally two paths to design CMOS integrated devices. One way is to 

fabricate the devices first and then try to make them CMOS compatible. The other way is 

to design devices directly on a CMOS chip. Once the devices are made CMOS 

compactible, they can benefit from enormous infrastructure available for CMOS 

electronic manufacturing and can quickly gain high reliability and low cost status 

available in CMOS, leading to their good commercial prospective. After devices are 

ready for commercial use, there is a second complication that needs to be addressed. In 

an integrated circuit, there are sometimes millions or even billions of devices with 

different sizes and operating conditions. These devices have different parameters, which 

lead to different electrical performance. The decision in what type of device to use and 

what parameters may provide optimal performance can be addressed by device modeling. 

There are basically two types of device models; The FEA (finite element analysis) based 

models utilized in TCAD device simulation, suitable for process as well as single device 

level simulation to predict different real-world physical effects such as heat, vibration, 
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flow, EM wave, etc. They utilize the very fundamental physics principles, ranging from 

the very general, like Maxwell Equations or Bernoulli’s Principle to the very specialized 

functions, such as Fowler-Nordheim tunneling equation for field emission tunneling. 

They employ the boundary conditions, which are set by a user, divide the whole 

geometry into smaller meshes and solve the physics based equations consistently for all 

meshes. The finer the meshes are, the more accurate the simulation is, and the more time 

it will take to run the simulation. Typically, this type of simulation is very computational 

intensive. So only a single device or a few very simple devices are acceptable at a fair 

accuracy if the simulation runs on a single computing platform. A few commercialized 

simulators are Synopsis Sentaurus TCAD, COMSOL Multiphysics, Ansys HFSS and so 

on. Circuit simulations, which usually composed of a dozen to millions of sophisticated 

electrical devices, sources, passive components, however, cannot rely on TCAD 

simulations as they are very inefficient in solving such a big problem. Therefore, a so-

called compact model for each of the devices is needed to speed up the simulation with a 

reasonable accuracy. 

Compact model is the bridge between devices and circuits. While partially physics 

based, most compact models utilize a set of empirical or semi-empirical mathematical 

equations to describe the device characteristics for circuit simulators. The compact model 

takes in the terminal input and generates terminal output information, which is based on 

the electrical behavior of the device, but can be extended to other characteristics such as 

mechanical motion, stress and heat. A simple example is an ideal resistor with resistance 

R. A simple mathematical function to describe the behavior would be I = V/R, where I is 

the current in the resistor when a voltage V is applied. The compact model takes in the 
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terminal voltage of the resistor (V) and output the current flowing through it (I). The 

device behavior described by compact model could be multi-domain correlated. For 

example, in a simple micro-cantilever as shown in Figure 1.1, mechanical domain and 

electrical domain are combined. The deflection of the micro-cantilever will induce the 

resistance change in the beam, which could be sensed by electrical instrument. If a gate is 

present, the electrical force between the gate and cantilever will drive the beam and the 

beam deflection will change the capacitance, which will further change the electrical 

forcing between the two. Therefore, a good compact model is able to take in the terminal 

information, combine the inherent dynamics to predict electrical or mechanical behavior 

accurately. 

 

 

Figure 1.1. A single crystal SiC epilayer cantilever for mass sensor [1] 

 

As modern nano-scale devices are becoming more and more sophisticated as the 

dimensions are getting smaller, compact models are becoming more complex since a 

number of physics-based phenomena need to be considered. Modern state-of-the-art 

MOSFET compact models usually have several hundred of parameters to take care of 
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various physical effects, such as short-channel effect, narrow-width effect, channel length 

modulation, drain-induced barrier lowering (DIBL), etc.[2]. 

After the compact model is developed, the circuit simulator takes all the compact 

models for each of the elements and the inter-connection information to solve the circuit 

equations iteratively using Newton-Raphson or a similar method. The circuit equations 

are Kirchhoff’s Voltage Law (KCL) and Kirchhoff’s Current Law (KVL). A good 

compact model needs to have the following properties, 

(1) Accurate for a wide range of parameters 

(2) Physics based 

(3) Computationally simple 

(4) Smooth enough: continuous, differentiable, even second order differentiable 

Finally, a compact model needs to have good parameter initializations and limits to 

ensure convergence in a circuit simulation. 

 

1.2 Compact Modeling of 45nm CMOS SOI Transistors 

A comprehensive deep submicron MOSFET model that captures DC, RF and noise 

characteristics of transistors is of great importance for circuit designers and several such 

models have already been fully or partially developed [3]–[7]. Modern mainstream 

transistor compact models are composite type models, which take an accurate DC core 

model to describe the drain current characteristic and a terminal charge model for low 

frequency analog simulations. In order to predict high frequency (HF) behavior, an 

equivalent circuit is constructed and various technology-related parasitic elements are 
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added around the DC core model. These parasitic elements are extracted from 

experimental data for different geometries and biases. 

Figure 1.2 is a typical example of modern transistor model. The bottom circuit in the 

left figure is the equivalent circuit model, which consists of a core transistor model, 

taking care of the drain current information and intrinsic parasitic elements, such as the 

overlapping capacitances, Cgs, Cgd, Cds, output conductance gds, etc. and several 

peripheral extrinsic parasitic elements (both resistive and inductive) such as LG, RG, LS, 

RS, RD, LD, etc., which cannot be neglected at high frequency operation. 

 

       

Figure 1.2. Equivalent circuit model of modern NMOS transistor [8] 

 

The origins of the various parasitics in a single finger layout of a CMOS transistor is also 

shown Figure 1.2. Almost all mainstream MOSFET models provide the core part of the 
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model as shown in the top left figure of Figure 1.2, while semiconductor manufacturing 

foundries characterize their own external parasitics for their own technology and add 

them to these core models to achieve a complete non-linear transistor model. 

Most current state-of-the-art transistor models are equivalent circuit based as 

discussed above. The differences are in the approaches that they employ to describe the 

DC model and charge model. In particular, how much physical phenomena are captured 

in the model may vary. Most of the models were intended for digital and low frequency 

applications so they often fail to capture the RF behavior accurately. With more attention 

towards the wireless communication market, the model vendors are forced to extend their 

models for HF applications. The widely used transistor models such as BSIM, and 

Phillips MOS Model have been shown to accurately predict the drain current behavior for 

deep submicron devices [3][4]. However, they usually employ hundreds of parameters to 

achieve such accuracy, which makes the parameter extraction process very tedious. Yet 

they fail to accurately capture the RF and noise behavior of modern sub-100-nm CMOS 

transistors. The new surface-potential-based PSP model formerly developed at the 

Pennsylvania State University and Philips (now at Arizona State University and NXP 

Semiconductors Research) has been supported by the Compact Modeling Council (now 

Compact Model Coalition in Si2) as the next standard model. It is a combined product of 

MOS Model 11 [4] and SP [9], both of which are based on charges calculated from 

surface potential [2]. The virtual source (VS) model has its advantage in reducing the 

number of parameters down to below twenty, while maintaining the accuracy of 

predicting non-linearity at DC, especially for short channel transistors, where semi-

ballistic transport takes place [6][10]. The model, however, is still in infancy with 



7 

 

unproven accuracy for non-linear RF behavior and no apparent advantages in prediction 

of the noise behavior at high frequencies. 

Various work on MOSFET small signal modeling has been reported [11]–[14]. For 

many RF applications such as RF power amplifiers, mixers, and oscillators, however, the 

capability of the model to predict the large signal and intermodulation distortions is 

important. Several work on MOSFET nonlinear model has also been reported [15]–[19].  

 

 

Figure 1.3. A SEM image from IBM of one finger of CMOS SOI transistor [20] 

 

Nevertheless, few deal with nonlinear RF modeling of MOSFETs with channel lengths 

below 65 nm and also on silicon-on-insulator (SOI) technology. CMOS SOI technology 

usually offers 20-35% better performance compared to its bulk CMOS counterparts [21], 

because of the elimination of junction capacitances and substrate loss. Also for power 

applications, the presence of the Buried Oxide (BOX) layer helps the device to sustain 

larger voltage swing, which may lead to high output power. Figure 1.3 is a SEM image of 

one finger of a CMOS SOI transistor. Only a few work has been devoted to CMOS SOI 
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transistor modeling [13], [22]–[24]. Most are either dealing with small-signal models or 

are purely empirical based. Large signal circuit design has been purely relying on the 

models provided by semiconductor manufacturing foundries, which are developed for 

digital and low-frequency analog circuits, and lack the accuracy to predict RF and 

microwave behavior. 

Accurate MOSFET noise model requires deep understanding of device physics and 

accurate noise source identification. Most existing MOSFET noise models are thermal-

noise based, which consider the noise originated from the finite channel resistance, 

induced gate noise, correlation between gate and channel noise and various parasitic 

resistances [25]–[29]. Reference [30] adds the source-bulk junction and drain-bulk 

junction shot noise to the channel thermal noise. The latter two noise sources, under 

normal biasing condition of the transistor, are very small, as these junctions are reversed 

biased. Classical long channel thermal noise model is not able to fully capture the noise 

for nanoscale transistors, especially when the channel length scales down to below 100 

nm. Compromises have been made to fit the need, however, not only does the classical 

long channel model fail to capture the fundamental physics, but also, as the device 

channel length scales down further, the model requires even more revisions. Lastly, 

reference [31] proposed that for short channel MOSFETs, the shot noise induced by the 

random nature of electron injection from the source through the potential barrier into the 

channel dominates the drain current noise compared to the thermal channel noise induced 

by electron random scattering in the channel. This model, unfortunately, has not been 

tested and verified. 
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In summary, an accurate CMOS SOI transistor modeling will require the model to 

have the following properties: 

(1) Physics based accurate drain current model  

(2) Accurate HF small signal and large signal model 

(3) Accurate nonlinear and intermodulation distortion 

(4) Scalability and bias dependence 

(5) Accurate HF noise prediction 

In this thesis, a comprehensive NMOS transistor model that covers drain current, high 

frequency nonlinear behavior, and a new combined shot-thermal noise is presented in the 

following sections.  

 

1.3 Cold Cathode Technology 

Cold cathode field emission has numerous vacuum microelectronic applications 

including plasma displays [32], electron guns for high power microwave sources [33], 

spacecraft neutralizer [34], scanning electron microscopes and so on. The mechanism for 

electron emission from a surface by applying a large electric field is called field emission. 

Recently, a field emission based vacuum channel MOSFET has been reported [35]. 

Figure 1.4 lists the applications of field emitters and the corresponding difficulty levels. 

Thermionic emission demands active cooling, a problem that has hindered the integration 

of thermionic electron guns into microsystems. In comparison to thermionic emission, 

field emission requires no cooling, thus may be suitable for integrated circuit 

applications. For a cold cathode to emit electrons, a substantially large electric field is 

often required to overcome the work function of the material used. To reduce the voltage 
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required between the two electrodes, sharp tips are usually used in almost all field 

emission applications. Tremendous amount of work has been devoted to conical shape 

field emitter arrays, known as Spindt arrays, for which the top sharp tip reduces the 

required voltage level and the large body would be able to provide sufficient amount of 

electrons and also helps to cool the device at the same time [34][36]. The problem 

associated with this type of devices is, however, the non-uniformity in tip sharpness due 

to fabrication variations. Typically, sharper tips are turned on earlier and conduct more 

current under the same bias, when compared to dull tips. This phenomenon leads to more 

heat generation for sharper tips, which in turn, causes them to burn easily. In order to 

mitigate the non-uniformity in tip current for longevity, a large feedback resistor, which 

acts as a current regulator, has been added in series with the emitter [37].  

 

 

Figure 1.4. Difficulty level of various applications of field emitters[36] 

 

This approach is not promising since the total emission current is limited to a fairly low 

number of field emitters as they continue to burn while their current is shifted to other 
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tips. A silicon pillar structure made with a low-doped semiconductor to achieve 

uniformity of emission current has been previously proposed [38]. Moreover, different 

materials are used as electron source, including carbon nanotubes (CNTs) [39]–[42], zinc 

oxide (ZnO) [43], and silicon carbide (SiC) [44]. The problem with all these 

implementations is that not only are they are still early stage research projects and far 

from integration, but also they have no current control mechanism, which may cause the 

device to fail rapidly. In this thesis, a field emitter electron source with vertical silicon 

nanowire array structure is proposed that addresses the problems of previous work. By 

taking advantage of current saturation mechanism in high aspect ratio semiconductor 

structure, the emission current can be readily limited and uniformity of emission is 

expected. Also, by reducing the doping level, the saturation voltage can be lowered to a 

few tens of volts for sharp tips and small gaps. A comprehensive device TCAD 

simulation has been conducted to achieve the optimal parameters for the design of the 

nanoscale electron field emitter. Two main failure mechanisms have been considered: 

thermal runaway and ion bombardment. Approaches to avoid both mechanisms are 

evaluated [34]. By utilizing the Langmuir-Blodgett (LB) experiment, a self-assembled 

mechanism to achieve low-cost and high density field emitters has been established. In 

this technique, instead of using electron beam lithography, a single compact layer of 

silica particles is deposited and used as a mask for etching of silicon nanowires. This way 

of fabrication yields a very dense array of nanowires, which will lead to high current 

density at a very reduced cost. Moreover, a new packaging process is proposed. Details of 

simulation, optimization and fabrication of these devices are discussed in Chapter 3. 
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1.4 Nano-Electro-Mechanical (NEM) Systems 

Micro/Nanoelectromechanical systems (M/NEMS) are gaining great momentum and 

interest for a variety of applications such as extremely high sensitivity mass sensors [1], 

mechanical switches [45], mechanical memories[46], tunable filters [47] and oscillators 

[48]. One reason is the maturity of fabrication and their commercialization. Consequently, 

several MEMS devices have been used in our daily lives, such as accelerometers and 

pressure sensors in cars, different type of sensors in phones, etc. [49]. The other reason is 

that they possess an inherently high quality factors and can provide narrow bandwidth 

operation compared to their electrical counterparts. Moreover, mechanical devices, when 

scaled down to nanometer dimensions are usually more energy efficient, which is a good 

advantage for mobile computing. Most commercialized mechanical devices are MEMS 

devices. When compared to their micro-scale counterparts, the nano-scale mechanical 

devices offer even better performance in most cases and are more sensitive if used as a 

sensor. The main problem is that they suffer from process variations and are still 

considered research-grade devices. The other challenge is that these nano-scale devices 

are difficult to integrate reliably because mechanical parts are more fragile as dimensions 

shrink down. Also, nano-scale devices are more challenging to characterize as the output 

signal is usually very weak and various damping sources such as surface effects may 

become more prominent. 

Regarding NEMS devices, two different goals are pursued in this thesis. One is to 

design CMOS-compatible NEMS devices based on already commercialized CMOS 

technologies. These NEMS devices are then post-processed using a simple 

microfabrication technology in the cleanroom to release the mechanical parts. These 
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devices are then characterized with various methods for different purposes. Barniol group 

has done some pioneering work for CMOS-compatible MEMS device mostly based on 

0.35 µm and 0.13 µm CMOS technologies and has proven the concept [50]–[54]. A more 

advanced technology, namely GlobalFoundries 45 nm CMOS SOI technology, has been 

used to pursue alternative designs for different applications. Further details are illustrated 

in Chapter 4.  

The other goal of pursuing NEMS technology is to construct a system-level compact 

model for nano-scale NEMS resonators. Not only does the model capture the mechanical 

behavior of the device, it also accounts for the detailed coupling between the mechanical 

and electrical behavior of the system. Furthermore, it takes into account the various 

parasitic elements, which are important for these nano-scale devices. Chapter 4 provides 

further details on this subject. 
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CHAPTER 2. COMPACT MODELING OF 45NM CMOS SOI TRANSISTORS 

2.1 Introduction 

Nanoscale CMOS technology is an excellent platform for implementing single-chip 

systems because of its low manufacturing cost and integration capability with digital 

circuits [55]. Cutoff frequency fT and maximum oscillation frequency fMAX of advanced 

nanoscale Metal Oxide Semiconductor Field Effect Transistor (MOSFET) have surpassed 

200 GHz mark, enabling microwave and mm-wave circuit operation [56]. Implementing 

microwave and mm-wave circuits with first time success remains elusive due to limited 

accuracy of the available device models on conductive Si substrates. Accordingly, 

comprehensive deep sub-100 nm MOSFET models that accurately capture DC, RF 

(including nonlinear) and noise characteristics of transistors are of great demand. Device 

modeling requires the knowledge and expertise in several distinct areas including 

mathematical modeling, device physics, high frequency and microwave measurement, 

electro-thermal analysis, noise analysis, programming, and statistics. Several MOSFET 

models have already been fully or partially developed [3]–[6]. The widely used BSIM 

model employs hundreds of parameter - many of them empirical - to capture linear and 

nonlinear RF and noise behavior of modern submicron MOSFET devices. Extraction of 

so many parameters is cumbersome and has led to the development of many BSIM 

models with insufficient accuracy. The surface potential based Phillips MOS Model 



15 

 

utilizes fewer empirical parameters compared to BSIM model. With over 200 parameters 

to be extracted, however, the model development is still an enormous challenge given the 

short time to market for advanced CMOS technologies. Another MOSFET model is the 

so-called virtual source (VS) model, which uses about ten parameters to describe the 

nonlinear DC performance of short-channel transistors. This model assumes a semi-

ballistic transport mechanism inside nanoscale channels of MOSFETs, leading to a good 

modeling accuracy [6][10]. The VS model, however, has to be supplemented with bias 

and geometry dependent parasitic resistances, capacitances, and inductances to become 

suitable for deployment at high frequencies. To date, the VS model with high frequency 

capability has been demonstrated for GaN FETs [57]. This model, however, is still 

unproven for predicting the nonlinear RF to mm-wave behavior of MOSFETs. 

Furthermore, it has no apparent advantage in predicting the noise behavior of nanoscale 

MOSFETs at high frequencies over other available MOSFET models. 

Compared to nonlinear DC modeling, the nonlinear RF modeling of transistors is 

more challenging due to bias and geometry dependence of some of the parasitic elements 

in the RF model. Small-signal modeling is a shortcut in developing RF models and helps 

capturing the high frequency behavior of transistors under small-signal excitation and 

under a particular bias condition with good accuracy. Various MOSFET small-signal 

models have been reported [11]–[14]. The main drawbacks in utilizing small-signal 

models are that the model cannot capture device nonlinearity and is only valid for 

particular device geometries and at particular bias conditions under small-signal 

excitation. Thus, the small-signal model fails to predict the large-signal behavior of RF 

power amplifiers, mixers, and oscillators, where device bias and gain may change under 
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applied RF signal and device nonlinearity. Furthermore, even for low-power RF circuits 

such as low noise amplifiers, weak nonlinearities including third order intermodulation 

distortions cannot be envisaged by the small-signal model. Several MOSFET nonlinear 

RF models have been reported [15]–[19]. Nevertheless, few deal with nonlinear RF 

modeling of MOSFETs with channel lengths below 65 nm and none addresses the 

intricacies of CMOS SOI modeling. To date, RF to mm-wave circuit designers have been 

mostly relying on digital models provided by semiconductor manufacturing foundries, 

which are mainly developed for digital and relatively low frequency analog circuit 

applications. These models have insufficient accuracy to predict RF and microwave 

behavior of linear and nonlinear devices and circuits. 

MOSFET noise modeling requires a good understanding of device physics in order to 

identify various noise sources across the device. Most existing MOSFET noise models 

are based completely upon thermal noise. Such models presume that the noise originates 

from several thermal noise sources including a finite channel resistance, induced gate 

noise correlated to the channel noise, and various parasitic resistances [25]–[29]. The 

induced gate noise is introduced to explain the extra gate noise of MOSFETs at high 

frequencies as the device dimensions scale down. The induced noise model is 

incorporated more or less in the same manner among van der Ziel long-channel model, 

the BSIM 6 model, and Phillips MOS 11 model [3][4][58]. They share the same noise 

topology, in which, two correlated noise sources, i.e. the channel noise (the current noise 

flowing from the drain to the source terminal) and the induced gate noise (the current 

noise flowing from the gate to the source terminal), are incorporated [4][25][59].  Several 

other modifications to the classical long-channel noise model have been introduced. 
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Reference [30] adds the source-bulk junction and drain-bulk junction shot noise to the 

channel thermal noise in an attempt to capture the extra noise seen in sub-micron 

MOSFETs. Moreover, for noise, high frequency and high power applications, the 

distributed gate resistance effect of multi-finger MOSFETs has been introduced. Due to 

difficulty in its implementation, instead of using a lumped RC model, this effect has been 

most commonly modeled by a lumped gate resistor with a modified empirical resistance 

value [60][61][62]. The distributed gate resistance depends on the MOSFET layout and 

can be avoided if short transistor finger widths are employed in multi-finger RF transistor 

structures.  

Despite all the modification made to the classical long-channel thermal noise model of 

MOSFETs, it still fails to fully capture the noise of nanoscale transistors, especially when 

the channel length scales down below 100 nm. On the other hand, for ultra short-channel 

MOSFETs with ballistic transport, it has been proposed that shot noise induced by the 

random nature of electron injection from the source contact through the potential barrier 

and into the channel dominates the drain current noise [31].  Therefore, the thermal 

channel noise induced by the random thermal motion of electrons in the channel of 

transistors operating in ballistic transport regime can be ignored. While this shot noise 

model fits the noise behavior of ultra short-channel MOSFETs investigated by device 

simulation, the model is not experimentally verified as no comparison to measured noise 

data has been provided [28]. Additionally, current sub-100 nm MOSFETs are still semi-

ballistic transport devices and the aforementioned shot noise model is not expected to 

completely capture their noise behavior. It only seems logical that a combined shot-

thermal channel noise model, which would integrate the classical long-channel noise 
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model and the shot-channel noise model together be utilized to accurately predict the 

noise behavior of the semi-ballistic transport devices. 

2.2 Virtual Source (VS) Based DC Modeling 

Since the explosion of mobile communication and computing, CMOS SOI technology 

has been in the forefront of technology platforms for applications such as 

microprocessors, embedded DRAM, transceivers and low-power devices [21]. Compared 

to its bulk CMOS counterpart, CMOS SOI provides between 20% to 35% performance 

gain or reduced power dissipation. The technology has been widely used in RF circuit 

design due to its low power dissipation, improved RF isolation, transistor stacking 

capability and the possibility of utilizing high resistivity and low-loss substrates [63][64]. 

The reasons for the performance gain of CMOS SOI devices over conventional bulk 

CMOS devices are: (i) significant reduction of transistor and passive element areal 

capacitances, (ii) reduced transistor short channel effects (SCE), (iii) improved transistor 

subthreshold slope, and (iv) the capability of using high resistivity substrate to reduce the 

losses and improve the self-resonance frequency of passive components. There are two 

types of SOI devices, namely, partially-depleted (PD) SOI and fully depleted (FD) SOI. 

In FD-SOI, the device layer thickness is smaller than the depletion thickness of source 

and drain contacts, leading to fully depleted body at threshold. There is no possibility of 

employing a body contact to the transistor in these devices and they behave similar to 

bulk CMOS devices, i.e. no kink effect (sudden increase in the output conductance for 

large drain-source voltage Vds) is observed. One of the main drawbacks of FD-SOI 

technology is its large-scale manufacturability, especially at sub-100 nm nodes.  It has 

been proven difficult to control the parameters responsible for device depletion thickness 
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to guarantee that the body is depleted under all biasing conditions across all device 

dimensions. PD-SOI, on the other hand, has a device layer thickness at least twice larger 

than the maximum depletion thickness, leading to the formation of a neutral region 

beneath the depletion region. Compared to the bulk CMOS and their FD-SOI 

counterparts, PD-SOI MOSFETs exhibit anomalous behavior such as kink effect, and 

reduction of threshold voltage VT with an increase of Vds for devices without substrate 

contacts (floating body configuration) [63].  The VS model employed in this work is 

developed for PD-SOI CMOS transistors, but currently does not capture kink effect. 

Additionally, several other mechanisms including breakdown mechanisms (source-drain 

reach-through, source-drain breakdown and gate oxide breakdown), low-frequency noise, 

lifetime and statistical variations of various device parameters are not employed at this 

time. While all these mechanisms are important and will be implemented in future 

modeling efforts, the current model is proven to have excellent accuracy for these 45 nm 

NMOS transistors, as long as the applied gate-source voltage Vgs and drain-source voltage 

Vds remain below the safe transistor operating voltage in this technology (Vsafe = 1.2 V).  

Note that although the VS model was originally developed for bulk MOSFETs, it has 

been applied to GaN HEMTs and Carbon Nanotube FETs with good accuracies, achieved 

by tweaking DC model parameters [65][66]. Through matching with measured data, it 

has been shown that the VS model is very robust in predicting the DC characteristics of 

NMOS transistors with different widths investigated in this work. 

As the channel length becomes comparable to the electron mean free path in the 

channel, the classical drift-diffusion transport model fails [10]. Under this condition, 

MOS transistors feature semi-ballistic transport in the channel, where the classical drift-



20 

 

diffusion based transport model fails [10].  By employing only a few physical parameters, 

the virtual source VS model is able to capture the output characteristics of modern short 

channel CMOS devices to a good accuracy. In the VS model, the normalized drain 

current is calculated as the product of the channel charge density (𝑄𝑥0) and the virtual 

source velocity (𝑣𝑥0) at the top of the energy barrier at the source [6], where the gradual 

channel approximation applies [6]. 

𝐼𝑑

𝑊
= 𝑄𝑖(𝑥𝑜) ∙ 𝑣𝑥𝑜 ∙ 𝐹𝑠𝑎𝑡                                              (2.1) 

where 𝐹𝑠𝑎𝑡 =
𝑉𝑑𝑠/𝑉𝑑𝑠𝑎𝑡

(1+(
𝑉𝑑𝑠

𝑉𝑑𝑠𝑎𝑡
)
𝛽

)

1/𝛽 . The channel charge density is given by an empirical 

function given by 

𝑄𝑖(𝑥𝑜) = 𝑛𝐶𝑖𝑛𝑣𝜙𝑡ln(1 + exp (
𝑉𝐺𝑆
′ −(𝑉𝑇−𝛼𝜙𝑡𝐹𝑓

𝑛𝜙𝑡
))                        (2.2) 

where n is subthreshold coefficient, 𝑉𝐺𝑆
′  is series resistance corrected voltage between 

gate and source and 𝛼 is a fitting parameter. VT  is DIBL corrected threshold voltage. 𝐹𝑓 is 

inversion function given by 

𝐹𝑓 =
1

1+exp(
𝑉𝐺𝑆
′ −(𝑉𝑇−𝛼𝜙𝑡/2

𝛼𝜙𝑡
)

                                             (2.3) 

Figure 2.1. illustrates the VS model fit into the measured data. An excellent fit for Id-Vds 

curves is observed. 

The VS model has ten input parameters: gate capacitance under strong inversion Cinv, 

threshold voltage VT, subthreshold swing SS, drain-induced barrier lowering parameter 

DIBL, series contact resistances Rs and Rd, effective channel length Leff, carrier low-field 

effective mobility µ, carrier velocity vxo at the virtual source xo, and two fitting 
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parameters α, β. Details of extraction of these parameters are provided in [6]. In short, the 

gate capacitance and effective channel length are extracted from the foundry design 

manual. Series contact resistances, threshold voltage, DIBL, SS, carrier mobility, and 

carrier velocity at the VS are extracted from the measured data. Empirically, α is set to be 

3.5 while β is set to be 1.8 for NMOS transistors. The VS parameter values for the 

NMOS transistors investigated in this work are extracted from the dc behavior and are 

listed in Table 2.1. 

Table 2.1. Extracted VS Parameters 

Parameters NMOS Notes 

Lg (nm) 40 Channel length 

Lov 12 Total overlap channel length 

Cg (μF/cm2) 2.625 Gate capacitance 

Rs (Ω∙μm) 153 Series contact resistance 

DIBL (mV/V) 156 Drain-induced barrier lowering 

SS (mV/dec) 97 Subthreshold swing 

vxo (cm/s) 9.1e6 Electron velocity at virtual source 

μ (cm2/V∙s) 144 Mobility 

α 3.5 Fitting parameter 

β 1.8 Fitting parameter 

 

Compared to its bulk counterpart, CMOS SOI devices present a relatively low thermal 

conductivity to the substrate due to a thin yet considerable buried oxide layer with low 

thermal conductivity under the active region. For RF transistors operating under high DC 

and/or RF powers, the temperature in the active region rises considerably. Higher 

temperature in the channel leads to higher scattering, higher noise and device 
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performance deterioration. In order to capture this phenomenon, a self-heating module is 

added to the VS model as described below. 

    (2.4) 

     (2.5) 

 

where both θ and η are fitting parameters. τ is the period of the RF signal or the interval 

over which the heat dissipation is calculated and dt is an infinitesimal time increment. 

Tamb is the ambient temperature and Tjunc is the elevated junction temperature due to self-

heating. Parameters vxo and µo are the initial VS velocity and carrier mobility at ambient 

temperature. Rth is the thermal resistance, assumed to be constant with modest 

temperature changes and may be calculated according to [67], 

   𝑅𝑡ℎ =
1

2𝑊
(

𝑡𝑏𝑜𝑥

𝑘𝑜𝑥𝑘𝑑𝑡𝑠𝑖
)

1

2
               (2.6) 

where W is the transistor width, tbox is the thickness of buried oxide, tsi is the silicon body 

thickness, kox and kd are the silicon dioxide and source/drain (n+ silicon) thermal 

conductivities, respectively. Note that thermal capacitance, which is a measure of how 

quickly the device warms up or cools down when power increases or decreases is not 

modeled. The above self-heating model takes into account virtual source velocity and 

mobility degradations due to the temperature rise ΔT caused by the self-dissipated power 

according to (2.5).  

An accurate DC model is the very foundation of the high frequency nonlinear 

transistor model. It not only requires to have an accurate prediction of the drain current, 

but also both transconductance and output conductance must be modeled with good 
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accuracies in order to predict both linear and nonlinear high frequency behavior of the 

transistor.  

 

 

 

Figure 2.1. Accuracy of the developed VS model with self-heating effect (red curves) vs. 

measured DC data (open symbols) for two DC characteristics: (a) Drain current vs drain-

source voltage (Id-Vds characteristics), when gate-source voltage Vgs varies from 0.2 V to 

1.0 V in steps of 0.2 V; (b) Drain current vs. gate-source voltage (transfer characteristics) 

when Vds = 0.1 V (lower currents) and Vds =1.1 V (higher currents)). 

 

2.3 Nonlinear RF Modeling 

2.3.1 Equivalent Circuit Based RF Model 

A simple equivalent circuit based MOSFET RF model has been developed for 

MOSFET transistors in this technology as shown in Figure 2.2 (a). It consists of the core 

nonlinear VS model with included self-heating, intrinsic parasitic capacitances Cɡs, Cɡd, 

Cds (enclosed by the blue box in Figure 2.2) and extrinsic parasitic elements (Cpɡ, Cpd, Lɡ, 

Rɡ, Ld, Rd, Ls, Rs) originated from interconnections, vertical interconnects (VIAs), RF 

pads and transistor layout parasitics. All these parasitic elements have been extracted 

from the measured S-parameter data. The measured transistors have multi-finger layout 
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with 1 µm finger width and 40 nm effective finger length and number of fingers ranging 

from 42 to 336. The S-parameters were measured up to 40 GHz using Keysight E8361A 

PNA with INFINITI GSG RF probes. Moreover, the open de-embedding patterns were 

measured and used to eliminate the parasitic parallel capacitances associated with the 

pads (Cpɡ, Cpd). Note that, unlike the small-signal equivalent circuit model, this model is 

built upon a physics based DC model, rather than empirical transconductance and output 

conductance extracted from measured S-Parameter data. 

 

 

 

Figure 2.2. Nonlinear equivalent circuit model of NMOS transistors under (a) normal 

operation and (b) cold bias condition. The DC characteristics is given by VS model 

(inside the red box). Elements inside the blue box are denoted as intrinsic elements 

whereas those outside of the box are extrinsic elements. 
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2.3.2 Extrinsic Parameter Extraction 

Most extrinsic elements (with the exception of Rg, Rd and Rs in Fig. 2.2 (a)) originate 

from the intermediate metal layers and the pads of MOSFET test structures and should 

not be taken into account when developing the nonlinear scalable RF model. The 

extrinsic parameters are bias independent but are functions of pad and interconnect 

geometries and their metallization structure. The extrinsic parasitic elements should be 

accurately extracted in order to obtain accurately extracted intrinsic parasitic elements 

discussed in the following section. The gate and drain parallel capacitances are extracted 

from an open de-embedding pattern that is fabricated on the same chip. Next, extrinsic 

parasitic inductances and resistances are extracted. Various extraction techniques have 

been developed for different technologies [12]–[14], [68]. Among them, techniques 

presented in [12] and [13] have been found to be most effective for this short-channel 

CMOS SOI technology. Under cold bias condition (Vds = 0 V and Ids = 0 A), the 

transistor operates in the linear regime and the equivalent circuit of the transistor 

simplifies to the one shown in Fig. 2.2 (b). During the extraction of extrinsic parameters, 

reference [13] utilized the fact that channel conductance in the linear regime is 

proportional to the overdrive voltage (Vgs – Vt) and this assumption has been verified for 

the NMOS transistors investigated in this work. By utilizing Z-parameters and equations 

developed in [13], all series parasitic elements may be extracted with a simple linear 

regression. The extracted extrinsic parameters are shown in Table 2.2. 
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Table 2.2. Extracted extrinsic parameter values for different sizes of transistors 

 

Width 

(µm) 
42 84 168 336 

Cpg (fF) 13.65 

Cpd (fF) 12.11 

Lg (pH) 32.13 30.33 35.32 35.41 

Ld (pH) 32.24 23.37 31.55 35.72 

Ls (pH) 45.22 41.26 39.76 38.40 

Rg (Ω) 25.78 14.15 5.9 2.95 

Rd (Ω) 2.62 2.47 2.01 2.08 

Rs (Ω) 0.36 0.34 0.69 0.85 

 

 

2.3.3 Intrinsic Parameter Extraction 

The intrinsic parameters were extracted from intrinsic Y-parameters, which can be 

obtained from the measured S-parameter by performing the following steps, 

(1)   converting the measured S-parameter (pads included) to extrinsic Y-parameter 

( )ext
Y ; 

(2) subtracting extrinsic parallel capacitances from extrinsic Y-parameter ( )ext
Y  to 

obtain intermediate Y-parameter (Y  ; 

[𝑌′] = [𝑌𝑒𝑥𝑡] − [
𝑗𝜔𝐶𝑝𝑔 0

0 𝑗𝜔𝐶𝑝𝑑
] 

(3) converting the intermediate Y-parameter (𝑌′) to intermediate Z-parameter (𝑍′) 

(4) subtracting extrinsic series resistances and inductances from the intermediate Z-

parameter (𝑍′) to obtain intrinsic Z-parameter (𝑍𝑖𝑛𝑡) 
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[𝑍𝑖𝑛𝑡] = [𝑍′] − [
𝑅𝑔 + 𝑅𝑠 + 𝑗𝜔𝐿𝑔 + 𝑗𝜔𝐿𝑠 𝑅𝑠 + 𝑗𝜔𝐿𝑠

𝑅𝑠 + 𝑗𝜔𝐿𝑠 𝑅𝑑 + 𝑅𝑠 + 𝑗𝜔𝐿𝑑 + 𝑗𝜔𝐿𝑠
] 

(5) converting intrinsic Z-parameter (𝑍𝑖𝑛𝑡) to intrinsic Y-parameter (𝑌𝑖𝑛𝑡). 

With the intrinsic Y-parameter ( 𝑌𝑖𝑛𝑡 ), the intrinsic elements can be extracted 

according the following equations: 

𝐶𝑔𝑒 = −
𝑖𝑚𝑎𝑔(𝑌12

𝑖𝑛𝑡)

𝜔
 

𝐶𝑔𝑠 =
𝑖𝑚𝑎𝑔(𝑌11

𝑖𝑛𝑡 + 𝑌12
𝑖𝑛𝑡)

𝜔
 

𝐶𝑑𝑠 =
𝑖𝑚𝑎𝑔(𝑌22

𝑖𝑛𝑡 + 𝑌12
𝑖𝑛𝑡)

𝜔
 

𝑅𝑑𝑠 =
1

𝑟𝑒𝑎𝑙(𝑌21
𝑖𝑛𝑡)

 

𝑔𝑚 = 𝑟𝑒𝑎𝑙(𝑌21
𝑖𝑛𝑡) 

𝐶𝑔𝑠𝑖 and 𝑅𝑖 were extracted from the intrinsic 𝑌11
𝑖𝑛𝑡 as 

𝑌11
𝑖𝑛𝑡 = 𝑗𝜔 (𝐶𝑔𝑠𝑒 + 𝐶𝑔𝑑 +

𝐶𝑔𝑠𝑖

1+𝜔2𝑅𝑖
2𝐶𝑔𝑠𝑖

2 ) +
𝜔2𝑅𝑖𝐶𝑔𝑠𝑖

2

1+𝜔2𝑅𝑖
2𝐶𝑔𝑠𝑖

2                            (2.7) 

Thus, 𝐶𝑔𝑠𝑖  and 𝑅𝑖  were extracted from linear fitting of the following equation at low 

frequency as shown in Figure 2.3. 

1

𝑟𝑒𝑎𝑙(𝑌11
𝑖𝑛𝑡)

= 𝑅𝑖 +
1

𝑅𝑖𝐶𝑔𝑠𝑖
2 ∙

1

𝜔2              (2.8) 

Figure 2.4 depicts extracted intrinsic elements vs. frequency for a 42 µm wide transistor 

(42 fingers with finger width of 1 µm and effective finger length of 40 nm) biased at 

gate-source voltage Vgs = 0.9 V, and drain-source voltage Vds = 0.9 V following the above 

extraction procedures. The fact that these intrinsic elements are constant over a broad 

frequency range of interest indicates the physical accuracy of the model. The same 

extraction technique has been applied to transistors with different sizes (84 µm, 168 µm, 
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and 336 µm wide NMOS transistors with 84, 168, and 336 fingers, respectively, each 

with finger width of 1 µm and effective finger length of 40 nm) under different biasing 

combinations.  Vgs is varied from 0 V to 1.2 V in steps of 0.3 V and Vds is varied from 0 V 

to 1.2 V, also in steps of 0.3 V. The extracted intrinsic parameters gm and Rds are 

compared with dIds/dVgs and the reciprocal of dIds/dVds from the nonlinear VS model and 

tossed out in favor of the nonlinear and scalable VS model. In Figure 2.5 (a), the 

extracted intrinsic transconductance gm (open circles) of an 84 µm wide transistor is 

compared with dIds/dVgs from the VS model (solid curves) as functions of gate-source 

voltage Vgs, when drain-source voltage Vds is a parameter. Similarly, in Figure 2.5 (b), the 

output resistance Rds (open circles) of an 84 µm wide transistor is compared with the 

reciprocal of dIds/dVds from the VS model (solid curves) as functions of drain-source 

voltage Vds, when gate-source voltage Vgs is a parameter. Similar observations are made 

for other transistor sizes. Therefore, the two comparisons show close match between the 

transconductance and output resistance and their respective VS values, which is an 

indication of VS model accuracy. 
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Figure 2.3. Linear fitting of 1/real(Y11) to 1/𝜔2 at low frequency region to extract            

Ri  and Cgsi 

 

 

 

Figure 2.4. Frequency dependence of the extracted intrinsic elements, Cgse, Cds, Cgd, Rds, 

and gm for a 42𝜇𝑚 transistor biased at Vgs = 0.9V, Vds = 0.9V 
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Figure 2.5. Accuracy of the VS model demonstrated by comparison to the extracted 

intrinsic parameters: (a) gm and (b) Rds for different bias conditions for an 84 µm wide 

transistor. Extracted intrinsic parameters gm and Rds are tossed out in favor of the scalable 

VS model. 

 

 

Figure 2.6. Intrinsic capacitances as functions of transistor width at Vgs = 0.9 V and Vds = 

0.9 V. 
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Figure 2.7. Bias dependence of extracted intrinsic elements (a)(d) Cgs, (b)(e) Cgd, and 

(c)(f) Cds as functions of drain-source voltage Vds and gate-source voltage Vgs for an 84 

µm wide transistor. 

 

 

Scalability is an essential part of a compact transistor model as it enables circuit 

designers to optimize the circuit performance by choosing the optimal transistor size. 

Figure 2.6 depicts the scalability of the extracted intrinsic capacitances Cgs, Cgd, and Cds 

for transistor widths ranging from 42 µm to 336 µm. As these parasitic capacitances are 

mostly the overlapping and fringing capacitances among different terminals, they have 

linear dependences on the transistor width. An empirical approach has been taken to 

model the size dependency (scalability) of the three intrinsic parasitic capacitances. Six 

fitting parameters (the slope and the Y-axis intersection of each curve in Figure 2.6) have 

been extracted. Intrinsic elements for transistors with other sizes not measured here are 

extrapolated from these values. Figure 2.7 shows the gate-source and drain-source bias 

dependence of the three intrinsic capacitances (Cgs, Cgd and Cds) for an 84 µm wide 

(a) (b) (c)

(d) (e)

(f)
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transistor. In Figure 2.7 (a)-(c), the drain-source voltage is a parameter whereas the gate-

source voltage is swept and in Figure 2.7 (d)-(f), the gate-source voltage is a parameter 

while the drain-source voltage is swept. Again, similar trends are observed for transistors 

with different width. 

 

2.3.4 S-parameter Simulation 

The developed MOSFET scalable model is put to a simple verification test. The S-

parameters of an 84 µm NMOS transistor combined with extrinsic parasitic elements that 

represent interconnect test structure and the pads are calculated using Cadence SpectreRF 

and compared with the measured S-parameter values for the same transistor under 

different bias conditions. Figure 2.8 shows such comparison when gate-source voltage is 

fixed, while drain-source voltage is varied (Vgs = 1.2 V, Vds = 0 V, 0.3 V, 0.6 V, 0.9 V, 

1.2 V). Figure 2.9 depicts the comparison for a fixed drain-source voltage, while gate-

source voltage is varied (Vds = 1.2 V, Vgs = 0 V, 0.3 V, 0.6 V, 0.9 V, 1.2 V). An excellent 

match among measured and simulated S-parameter values up to 40 GHz and for all 

biasing conditions is observed. Moreover, similar trends are observed for other transistor 

sizes, demonstrating the accuracy of the scalable nonlinear model to predict the small-

signal RF performance of transistors with different sizes.  
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Figure 2.8. Comparisons of measured (open symbol) and simulated (solid line) S-

parameters for different Vds (0.0V, 0.3V, 0.6V, 0.9V, 1.2V) and Vgs = 1.2V for 84µm 

transistor. 
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Figure 2.9. Comparisons of measured (open symbol) and simulated (solid line) S-

Parameters for different Vgs (0.0V, 0.3V, 0.6V, 0.9V, 1.2V) and Vds = 1.2V for 84µm 

transistor. 

 

 

 

2.4 Noise Behavior of nm-Scale Transistors 

The next step in the model development is to add noise capability to the existing 

nonlinear model. According to classical high frequency noise models, the noise sources 
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in a MOS transistor originate from thermal noise associated with access resistances and 

channel resistance as shown in Figure 2.10 (a) ( , , , and ). The thermal noise of 

physical resistors within the transistor can be described by a current noise source in 

parallel with the resistor R with a noise power spectral density 4kTΔf/R. The absolute 

temperature T is set to the junction temperature of the device according to the self-heating 

module of the nonlinear transistor model. For , in addition to the thermal gate noise 

stemmed from the physical gate resistance, an induced gate noise is introduced to the 

classical model of sub-micron MOSFETs with very thin gate oxide to capture the noise 

due to the coupling between the potential fluctuations in the channel and the overlaying 

gate through gate-oxide capacitance [58]. On the other hand, for channel thermal noise, 

while some circuit simulators such as SPICE use the model  (where gm is 

the transconductance at the DC operating point, not valid for the linear region), the most 

widely used channel noise model is the one derived by van der Ziel given by, 

𝐼𝑑
2̅ = 4𝛾𝑘𝐵𝑇𝑔0                                                    (2.9) 

where g0 is the output conductance at Vds = 0 V (linear region). γ is the so-called channel 

noise parameter and is equal to 2/3 in saturation and 1 in linear region for long channel 

devices [25]. This noise model describes the noise behavior of long-channel transistors 

well. The model, however, tends to underestimate the channel noise for short-channel 

transistors [69]. In an attempt to explain the excess noise of short-channel transistors, the  
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Figure 2.10. (a) Equivalent noise circuit model of a MOSFET with various noise sources. 

(b) The inset depicts the noise mechanisms in the channel for short-channel MOSFETs. 

(c) Circuit diagram of the combined channel noise model. 

 

excess noise has been attributed to the elevated electron temperature at the drain [70].  

Unfortunately, the electron temperature based noise model is shown to be in 

contradiction with simulation results [71]. On the other hand, the existing long-channel 

noise model has been adopted by most model developers through assigning a larger 

channel noise parameter γ that is no longer constant and changes with both bias and 

device dimensions to accommodate larger than expected noise of short-channel 

MOSFETs. While such a modification is convenient, it does not capture the noise of the 

short-channel device accurately, especially as the drain-source voltage or the lattice 

temperature of the device changes. Extraction of such empirical parameter γ to fit to all 

measured noise data is also very challenging. 
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Reference [31] points out that classical thermal channel noise model is based on drift-

diffusion transport theory, which fails to predict the transport behavior of short-channel 

devices with ballistic transport. Therefore, in [31] the channel noise has been attributed to 

the shot noise induced by random injections of electrons from the source terminal to the 

channel, whereas the thermal noise in the channel has been completely eliminated. The 

current noise spectral density of the channel has been described by 2ksqI following the 

shot noise model in vacuum tubes (which are ballistic devices). According to the model, 

as the injection of electrons alter the field near the source in the space-charge region, the 

probability for the following electron injection is reduced, leading to the introduction of a 

shot noise suppression factor ks (ks < 1). The shot noise model of short-channel MOSFET 

with the assumption of ballistic transport has been compared with device simulation data.  

Unfortunately, to the best of authors’ knowledge, no verification of the noise model with 

measured noise performance has been provided since.  

The shot noise model is built upon the ballistic transport theory, in which the electrons, 

after tunneling into the channel, are pumped into the drain immediately without any 

scattering. Given the doping density of the channel of NMOS transistors in this 45 nm 

CMOS SOI technology, the electron mean free path is roughly 7 nm [72]. Therefore, 

each electron encounters, on average, 5-6 scattering events in the channel before arriving 

at the drain (Effective channel length is 40 nm). This assumption ignores the fact that the 

transport occurs at Si-SiO2 interface, which may impact the number of scattering events 

experienced by each electron. Therefore, it is only logical to devise a MOSFET noise 

model for such semi-ballistic devices that has contributions from both thermal and shot 



38 

 

noise. Therefore, the effective channel noise spectral density can be described through the 

following equation, 

 
2 2 2
Ch sh thi i i                                                             (2.10) 

in which, 
 
is the shot noise term used to describe the noise associated with the 

tunneling of electrons at source-channel barrier, and  is the thermal noise generated by 

thermal agitation of electrons in the channel given by (2.9) with γ of 2/3 in saturation and 

1 in linear region. Note that the correlation between the two noise sources  and  is 

ignored as the two noise mechanisms are spatially separated. The model is depicted in the 

schematic shown in Figure 2.10 where the noise equivalent circuit model is constructed 

over the high frequency nonlinear model. The combination of the shot and thermal 

channel noise models not only predicts the drain current noise accurately, but it also 

captures the undying physics very well. Note that an accurate high frequency equivalent 

circuit model is the premise to constructing the noise model. The noise sources consist of 

the thermal noise from three access resistors for the three terminals of the device, i.e. , 

,  and the combined shot-thermal noise from the channel, i.e. , given by (2.10). 

By matching to the measured noise data, it has been experimentally found that there is no 

need for accounting for the induced gate noise or distributed gate resistance, at least for 

the transistor geometries measured in this work. As a result, to model the noise, a single 

parameter ks, which is not bias, geometry or frequency dependent is used to match the 

model to all the measured noise data. 

The high frequency noise characteristics of a two-port system can be represented by  
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𝑁𝐹 = 𝑁𝐹𝑚𝑖𝑛 +
𝑅𝑛
𝐺𝑠

|𝑌𝑠 − 𝑌𝑜𝑝𝑡|
2
 

= 𝑁𝐹𝑚𝑖𝑛 +
4𝑅𝑛

𝑍0

|Γ𝑜𝑝𝑡−Γ𝑠|
2

|1+Γ𝑜𝑝𝑡|
2
(1−|Γ𝑠|

2)
                              (2.11) 

where NF is the noise factor (also termed as noise figure when reported in decibels) at a 

given source impedance Γs. NFmin is the minimum noise factor. Γopt is the source 

reflection coefficient for minimum noise factor and Z0 = 50 Ω is the characteristic 

impedance of the system. Rn is the equivalent noise resistance, which is a measure of how 

fast the noise figure degrades as the source reflection coefficient deviates from its 

optimum value Γopt. An accurate NF prediction requires an accurate modeling of four 

noise parameters: NFmin, Rn, and complex Γopt. The equivalent circuit S-parameter and 

noise parameters (NFmin, Rn, and Γopt) were calculated by SpectreRF simulation. Figure 

2.11 is the comparison between the measured S-parameters and simulated S-parameters 

based on this model and the one based on the foundry model (post-layout simulation) for 

an 84 µm transistor biased at Vgs = 0.5 V, Vds = 1.0 V in the frequency range of 8 to 40 

GHz. As can be seen, this model demonstrates a much better accuracy for predicting S-

parameters, which is a necessary requirement for predicting the noise behavior. 
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Figure 2.11. Comparison of measured (symbols) and simulated S-parameters by this 

model (red lines) and the foundry model (blue lines) for an NMOS transistor with a width 

of 84 µm at bias Vgs = 0.5 V and Vds = 1 V. 

 

 

 

Figure 2.12. Measured (open symbols) and simulated (lines) noise parameters with three 

different noise models: (a) NFmin and Rn as functions of frequency and (b) ΓOPT plotted on 

a Smith impedance chart for an NMOS transistor with a width of 84 µm at bias Vgs = 0.5 

V and Vds = 1 V. Note that, the mismatch in NFmin at frequencies between 26 and 40 GHz 

is due to the measurement issues as it appears in all the noise data. 
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Figure 2.12 shows the simulated noise parameters, i.e. NFmin, Rn, and Γopt by three 

different models (the one developed in this work, the classical ideal long-channel thermal 

noise model with γ of 2/3, and the post-layout foundry model) compared to the measured 

data. The foundry model and the classical model both underestimate the minimum noise 

figure by ~ 1 dB and ~ 0.5 dB, respectively, as they attribute the channel noise to the 

finite channel resistance, whereas the shot noise at the source terminal is not considered. 

Moreover, the classical channel noise model and the foundry model predict that the 

equivalent noise resistance is almost flat within the broad range of frequencies, which is 

in contradiction with the measured data. Additionally, the foundry model and the 

classical model underestimate the equivalent noise resistance, which means that a small 

mismatch of the source impedance leads to a large discrepancy in the overall noise figure. 

Inaccuracy in the optimal reflection coefficient prediction observed by both the foundry 

model and the classical model shown in Figure 2.12 (b) leads to erroneous impedance 

matching of noise sensitive circuits e.g. low noise amplifiers (LNAs). Compared to the 

foundry model and the classical thermal model, the model developed in this work 

delivers a much more accurate prediction of all the noise parameters, leading to accurate 

noise figure predications for all impedance values across the Smith chart. Note that in the 

frequency range between 26 to 40 GHz, an abrupt drop of NFmin is observed in the 

measure data for all measured transistors (different sizes) and under different bias 

combinations. As the noise figure cannot decrease or fluctuate with increased frequency, 

the observed trend of NFmin between 26 to 40 GHz are likely due to a measurement-

related issue, which is still under investigation. Such measurement-related issues were 

much less severe for Rn, and Γopt measurements. 
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With respect to the device operating region, classical thermal noise model predicts that 

the noise spectral density should decrease from linear region with γ = 1 to saturation 

region with γ = 2/3, which is in direct contradiction with the observed trend of the 

extracted noise spectral density shown in Figure 2.13. The extracted channel noise 

follows shot noise trend but is smaller in values. 

Figure 2.14 shows the noise behavior as a function of channel length when devices 

scale down to near ballistic limit. There are two critical lengths (𝐿𝑐1 and 𝐿𝑐2). Above 𝐿𝑐2, 

the thermal noise dictates the output noise while below 𝐿𝑐1, the shot noise dominates the 

output noise. In between these two critical channel lengths, the channel noise should be 

described by the combined shot-thermal noise. 

 

 

 

Figure 2.13. Comparisons of different channel noise models as a function of Vds, Vgs is 

kept at 0.5V for 42µm transistor 
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Figure 2.14. Relation between shot noise, thermal noise with the overall output noise as a 

function of channel length 

 

 

 

 

Figure 2.15. Comparison of different channel noise models for transistors of different 

sizes, bias condition: 0.5Vgs, 1.0Vds 
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2.5 Model Validation 

In order to further verify the model accuracy, two different circuits, namely a triple-

stacked power amplifier cell [73] and a two-stage microwave low noise amplifier (LNA) 

have been implemented and their measured performance is compared against simulated 

data based on the transistor model developed in this work. The triple-stacked power cell, 

which can be used to construct power amplifiers, is used to verify the power performance 

and nonlinearity of this model, whereas, the two-stage LNA has been used to verify the 

high-frequency noise model developed in this work. 

Figure 2.16 (a) shows the circuit schematic of the triple-stacked power amplifier cell, 

which consists of three 126 µm wide transistors, with the bottom transistor in common-

source configuration with external bias applied through a bias tee and two common-gate 

transistors that are self-biased from an output bias-tee. Three power measurements at 

three frequencies, 2 GHz, 10 GHz, and 24 GHz have been conducted using a Keysight 

83640L CW signal generator as the power source and a Keysight N8488A power sensor 

connected to a power meter. The circuit is also simulated using SpectreRF with a 

foundry-supported process design kit (PDK) and also with the transistor model developed 

in this work in combination with models of passive devices (inductors and capacitors) 

from the post-layout extraction. The simulated and measured output power as a function 

of input power (Pout-Pin) for each measured frequency are shown in Figure 2.16 (b) and 

present a close agreement between the measured data and our model. Excellent prediction 

of the linear output power and P1dB (1 dB compression point) indicates the accuracy of 

the nonlinear model of the transistor. Note that the foundry model overestimates the 

output power and P1dB by 1 to 3 dB. 
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Figure 2.16. (a) The circuit schematic of a triple-stack power amplifier cell. All 

transistors are 126 µm wide. (b) The comparison among measured and simulated output 

powers of the triple-stack power cell at three different frequencies: 2 GHz, 10 GHz, 24 

GHz. 
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Figure 2.17. (a) The circuit schematic of a two-stage microwave LNA. The first stage 

uses a 126 µm wide transistor while the second stage has an 84 µm wide transistor. (b) 

The comparison between measured and simulated S21 and Noise Figure of the LNA (50 Ω 

source impedance) vs. frequency. Noise data was only available up to 26.5 GHz. 

 

The circuit schematic of the two-stage LNA is depicted in Figure 2.17 (a). The LNA 

consists of two common-source stages with a 126 µm wide transistor in the first stage and 

an 84 µm wide transistor in the second stage. The gain and noise figure at 50 Ω input 

impedance have been measured using a Keysight N8975A Noise Figure Analyzer with 

INFINITI GSG RF probes. The S-Parameters of the LNA are also measured using a 

Keysight E8361A PNA. Moreover, the circuit is simulated using SpectreRF with both the 

foundry-supported PDK and the transistor model developed in this work in combination 

with models of passive devices (inductors and capacitors) from the post-layout extraction. 

Figure 2.17 (b) depicts comparison among the simulated and measured forward gain S21 
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and noise figure at 50 Ω input impedance of the LNA. A close agreement between the 

measured data and simulated data based on this model is observed for both gain (S21) and 

noise figure from 10 to 30 GHz (Noise data to 26 GHz). The simulated circuit 

performance based on the foundry PDK underestimates both gain (by as much as 5 dB) 

and noise figure (by about 1.3 dB). 

 

2.6 Conclusion 

A new comprehensive and scalable NMOS transistor model for a standard 45 nm 

CMOS SOI technology has been developed and its accuracy has been verified through 

comparison with measured data. This nonlinear RF model employs a core VS model to 

simulate nonlinear DC characteristics, and is supplemented with self-consistent heating 

effect to capture the effect of high DC and/or RF power dissipation of large multi-finger 

transistors on the SOI substrate. The model captures the underlying transport theory to 

accurately predict drain current and its derivatives with respect to gate-source and drain-

source voltages. Various device and interconnect related parasitic elements have been 

added to the model and are extracted from the measurement for transistors with different 

widths operating under various biases to achieve a nonlinear model for all regions of 

operation. Compared to the existing foundry model, this model maintains a much better 

accuracy through the comparison of simulated and measured small-signal S-parameters. 

A new combined shot-thermal channel noise model that predicts the high frequency 

noise behavior of NMOS transistors has been developed. Through the combination of 

suppressed shot noise and ideal long-channel thermal noise, the model developed in this 

work is capable of capturing the device physics and achieving a better noise behavior 
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prediction compared to its counterparts. It is found that induced gate noise model and 

distributed gate resistance model are not required to capture the noise behavior of these 

transistors. The developed noise model uses only one fitting parameter (shot noise 

suppression factor ks) and overcomes the limitations of most existing thermal-noise based 

models which have difficulty predicting the noise of sub-100 nm channel length 

transistors and a model based on pure shot channel noise developed for ballistic transport 

devices. 

The model accuracy is confirmed through the comparison with the measured data of 

two microwave integrated circuits. A triple-stack power amplifier cell and a two-stage 

LNA were designed, implemented and measured. The close agreement between the 

measured and simulated output power, gain, and noise figure of these circuits indicates 

that the model is ready for practical RF and microwave circuit design. 

Effects such as gate oxide breakdown, drain-source reach-through, kink effect 

observed in PD-SOI transistors, gate distributed resistance, low-frequency noise, device 

lifetime and statistical variations of device parameters have not been modeled in this 

work. While this work has focused on 45 nm NMOS SOI transistors, many of the 

techniques and ideas described here may be applicable to other CMOS and CMOS-SOI 

devices and even III-V FETs. 
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CHAPTER 3. COLD CATHODE TECHNOLOGY 

3.1 Introduction 

Before the transistor revolutionized the world, the vacuum tubes dominate the fields of 

computing and communication. However, there are several fundamental shortcomings for 

the vacuum tube devices in early- and mid-1900s, such as their large size, power hungry 

and hot operation, which often led to their early failure. These drawbacks were not 

resolved and presented a significant disadvantage compared to recently discovered 

transistors in early 1950s. Transistors with the possibility of integration leading to 

integrated circuits eventually replaced vacuum tubes in most computing and 

communication platforms. Figure 3.1 is a typical picture of the vacuum tube device. 

There are three terminals, cathode, anode, and control grid, which operate in a similar 

way to the source, drain, and gate terminals of a MOSFET. The whole structure is inside 

of a vacuum tube. When a voltage is applied to the anode, an electrical field will present 

at the cathode. If the electrical field is large enough such that the electrons at the cathode 

can overcome the surface potential, the electrons will tunnel through the vacuum to the 

anode and the current flows from the anode to the cathode. The control grid functions as 

a gate. It reduces the threshold voltage when a positive voltage is applied and shuts off 

the current flow when a negative voltage is applied. As can be seen, the vacuum tube 

device operates pretty much the same way as modern MOSFETs. Despite all the afore-
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mentioned drawbacks of vacuum tube technology, it has two apparent advantages that 

make them superior to the modern CMOS transistor technology, namely the ballistic 

transport and the high power characteristics. Compared to the solid channel in the 

MOSFET, the channel of this device is vacuum. So the transition time will be much 

shorter compared to MOSFETs of the same scale, which suffer from scattering and are 

governed by drift-diffusion transport for long channel devices or semi-ballistic for shot 

channel devices. Shorter transition time means higher operating frequency. In fact, it has 

been shown that modern vacuum tube devices, with a similar channel length compared to 

MOSFETs, can operate up to THz frequency range, much above microwave frequencies 

that MOSFETs can operate and below infrared frequencies where operation is amenable 

to infrared and optical technology. Therefore, these vacuum devices can comfortably fill 

this THz gap of the electromagnetic spectrum.  

The most mainstream implementation of modern vacuum tube technology is based on 

silicon field emitter arrays (FEAs). While tremendous progress has been made in 

advancing the technology, there are still several obstacles that prevent Si FEAs from 

commercial deployment. First, due to process variations, it has been impractical to 

achieve uniformity across the individual emitters of a silicon field emitter array. Non-

uniformity of these FEAs causes variations in length and sharpness across the emitters 

which leads to some of the devices to emit larger currents while others may have less or 

no current at all. Emitter tips with very high currents may heat up excessively and burn 

out due to joule heating. The second reason for these silicon FEAs devices not to become 

commercially available is their short lifetime due to possible thermal runaway, and ion 

bombardment, which will be discussed in details in the following sections. Finally, 
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current FEA devices require a high operation voltage (~1,000 V) and have a low current 

density and fall short in integration and mass production due to fabrication 

incompatibility with mainstream Si technologies.  

In this thesis, a new vacuum transistor based on silicon FEAs is proposed as shown in 

Figure 3.2. In this structure, several techniques are utilized to overcome the above 

mentioned shortcomings of modern silicon FEAs. For example, non-uniformity is 

addressed by adapting a simple but novel current limiting mechanism that results in 

current density uniformity across FEA tips despite difference in their shape, length or 

sharpness. Short lifetime is tackled by careful engineering design of the device 

parameters. Low current density and high fabrication cost are mitigated by utilizing a 

new fabrication technique, based on Langmuir-Blodgett (LB) self-assembled deposition. 

The detailed discussions on these techniques are presented in the following sections. 

Table 3.1 shows the comparison among the old vacuum tube technology, the modern 

CMOS technology, and the new proposed vacuum transistor technology. As can be seen, 

the new proposed vacuum transistor technology resolves almost all the drawbacks of the 

old vacuum tube technology and achieves a comparable performance and integration 

capability compared to the modern CMOS technology with presumed advantages of 

operating at higher frequencies and higher powers. 

 

3.2 Physics 

Field emission is associated with the electrons tunneling through a surface barrier, 

which follows the Fowler-Nordheim (FN) equation described below, where tunneling 



52 

 

occurs from the conduction band of the non-conducting region to the vacuum energy 

level. The basic version of the equation valid for flat metallic surfaces is shown below: 

𝐽𝐹𝑁 = 𝐴𝐸2𝑒(−
𝐵

𝐸
)
                                                   (3.1) 

where 𝐽𝐹𝑁is the electronic current density, 𝐸 is the electric field at the vicinity of the 

field emitter, and 𝐴 and 𝐵 are physical constants, which are 1.23 × 10−6A/V2  and 

2.37 × 108V/cm, respectively. 

 

 

Figure 3.1. A typical three-terminal vacuum tube device. 

 

 

 

Figure 3.2. The proposed silicon FEAs as a vacuum transistor. 



53 

 

 

 

Table 3.1. A comparison among the old vacuum tube technology, the modern CMOS 

technology and the new proposed vacuum tube technology. 

 

Old vacuum 

tube technology 

Modern 

CMOS technology 

New vacuum 

tube technology 

Operation speed ~ 100kHz ~ 100GHz ~ 1THz 

Mechanism 
Thermionic 

emission 
Solid channel Field emission 

Channel length ~ cm to mm 10nm A few nm 

Transport ballistic semi-ballistic ballistic 

Temperature hot cold cold 

Size large small small 

Power 5 W - MW 0.1 - 5 W ~5 - 50 W 

Integration 
Low level 

(17,468 in 167 m2) 

High (billions in 

cm2) 
high 

Cost expensive cheap cheap 

Reliability unreliable reliable reliable 
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Figure 3.3. (Left) Field emission characteristics of a single silicon nanowire with 

different diameters and doping densities demonstrating current regulation. (Right) the 

corresponding FN plot. 

 

Silicon pillar structure as the emitters has been reported as a current limiter to improve 

the uniformity [38][74] and reliability [75]. These designs utilized FEAs with µm level 

dimensions of the tips and high doping densities, which prevented them from achieving 

reliabilities of typical MOSFET devices. The field emitter arrays based on vertical 

nanowire structure with much smaller dimensions (~nm) will give rise to better current 

regulation due to the high aspect ratio and tiny cross section area. Borrowing the idea 

from the operation of MOSFETs, the drain current will saturate after the drain voltage 

goes above the overdriven voltage. Similarly, the current of the nanowire reaches a 

saturated state as electric field strength increases beyond a critical value. Any further 

increase of the electric field strength leads to only slight increment in emission current 

due to the channel length modulation effect, the same phenomena observed in short-

channel MOSFETs. From the drift-diffusion theory, the saturation current is simply given 

by𝐼𝑠𝑎𝑡 = 𝐴𝑛𝑒𝑣𝑠 , where𝐴is the cross-sectional area, 𝑒is the electron charge, 𝑛is the 

carrier concentration, and 𝑣𝑠 is the saturation velocity (~107cm/s  for silicon). This 
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current-source behavior will help protect the nano-tips from drawing high currents 

estimated by the Fowler-Nordheim equation and eventual burning out.  The current-

source behavior also facilitates improved reliability characteristics. As can be seen from 

the saturation current equation , 𝐼𝑠𝑎𝑡 = 𝐴𝑛𝑒𝑣𝑠 , the current can be well controlled by 

tuning the carrier concentration. Figure 3.3 (left) shows the emission characteristics with 

a good control over emission current per tip as the carrier concentration is decreased by a 

factor of 100 . By tuning the applied voltage, almost all the lightly doped tips with 

diameters ranging from 20nmto60nmcan emit current with a nearly constant current 

density. The heavily doped tips, however, saturate at a very high current, in the regime 

that the tips may burn out due to Joule heating. Figure 3.3 (right) is the corresponding FN 

plot. The linear relation for tips doped at density of1 × 1015cm−3verifies the current is 

from field emission without any current control mechanism present. The negative slopes 

become positive at high voltage for tips doped at density of1 × 1013cm−3demonstrating 

a good control over current due to the saturation mechanism. 

 

3.3 Failure Mechanisms  

There are two main mechanisms that will cause the silicon nano-tips to fail. The first 

one is thermal-related failures including thermal burnout and thermal runaway. The other 

mechanism is due to the bombardment of ionized residue, which is a result of the 

presence of atoms in the vacuum that are ionized by high energy electrons. 

3.3.1 Thermal Stability 

A good control of current leads to a better control of the temperature profile across the 

array. There are two main temperature restrictions need to be considered. First, the device 
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needs to operate below the silicon melting point (~1414 oC). Given the dimensions and 

operating conditions of SI FEAs, it has been shown that the two heating mechanisms, 

namely joule heating and Nottingham effect, do not provide enough energy to 

 

Figure 3.4 FEAs saturated current density as a function of temperature for different 

doping levels. Safe Operating Area (SOA, blue region) is where the current density 

negatively depends on the temperature while Thermal runaway area is where current 

density positively depends on temperature. 

 

trigger a direct failure [76]. The other thermal restriction is the positive feedback thermal 

runaway, which is already known in power bipolar transistors as the Forward Bias Safe 

Operating Area (FBSOA) [77]. In fact, for lowly doped semiconductor devices, the 

conduction occurs in two stages with respect to temperature. At initial stage when 

temperature is below a certain critical temperature (𝑇c), temperature increment leads to 

more scattering of carriers with lattice structure and ionized centers. As a result, the 

mobility of electrons will decrease. Therefore, in this so-called mobility dominated 
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transport regime, the current decreases as the temperature increases. However, by further 

increasing the temperature, more electrons will be invoked from the valance band to the 

conduction band, giving rise to an increment of intrinsic carrier concentration. In this 

carrier density dominated region, which occurs beyond the critical temperature (𝑇c), the 

current increases as the temperature increases. Higher current will generate more joule 

heat and the temperature will go even higher. This positive feedback causes a local 

heating of the device at one or few emitter tips and will eventually cause a fatal failure to 

the device as illustrated in Figure 3.4.  

 To extract the safe operating area (SOA) of field emitter arrays, a heat transfer 

simulation was conducted using COMSOL Multiphysics. Joule heating was considered as 

the heat source while two main channels for heat outflow were considered: (1) heat  

 

 

Figure 3.5. Simulation result of saturation current as a function of temperature for 

different carrier concentrations. 
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radiation from the surface to the ambient vacuum and (2) thermal conduction through the 

substrate, which is the dominant heat sinking mechanism in this case. As can be seen 

from Figure 3.5, the saturation current initially decreases with the ambient temperature 

and increases after surpassing the critical temperature. This behavior is distinct for 

different carrier concentrations. The critical temperature between the mobility dominated 

region and the carrier density dominant region is 400K, 450K, 500K, and 550K for 

carrier concentrations 1 × 1013cm−3, 1 × 1014cm−3, 5 × 1014cm−3 and 1 ×

1015cm−3, respectively. The device should operate below these critical temperatures to 

avoid thermal runaway. Although this is for nanowires with 40nmdiameter and 3μmin 

length, same principle also applies to other dimensions.  

 

3.3.2 Ion Bombardment 

Emitted electrons from the nanowire will ionize the residue gas molecules in the 

chamber, which under the electric field will be sputtered onto the tips causing them to 

degrade [78]. This ion sputtering will increase the surface roughness of the tip apex. In 

other words, the phenomenon leads to more microscopically sharp sites on the tip apex. 

These sharp tiny sites, termed as nanoprotrusion [34], induce a highly concentrated 

electric field and emit more currents, leading to their burn out. This mechanism can also 

explain the different fluctuation modes observed in [79].  

The velocity (𝑣𝑖𝑜𝑛) of the ionized gas molecules that reach the tip apex from the anode 

can be estimated as: 

 𝑣𝑖𝑜𝑛 =√
2𝑞𝑉

𝑚𝑖𝑜𝑛
∗                                                    (2.2) 
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where q is the charge of the ionized gas molecule, V is the applied voltage and 𝑚𝑖𝑜𝑛
∗  is the 

effective mass of the ion. By reducing the gap between the collector and the tip apex, the 

voltage required for current emission could be reduced, which would mitigate the ion 

bombardment. On the other hand, the rate of ion bombardment per unit time can be 

estimated as: 

𝑒𝑖 = 𝛼𝑛𝑖 
Ω

4𝜋
𝑆                                                (3.3) 

where 𝛼 is the probability of gas molecules being ionized per unit time, 𝑛𝑖 is the number 

density of residual gas molecules, Ω is the solid angle that the tip sees the anode and 𝑆 is 

the volumn of the sphere centered at the tip apex with a radius equal to the gap between 

the collector and the tip apex. 𝛼 is estimated to be 0.02 when the energy of the hitting 

electron is 200 eV and it will increase as the energy of the hitting electrons increases [79]. 

Thus, reducing the gap distance and higher vacuum environment would greatly improve 

the reliability of the tips. 

 

3.4 Silicon Nanowire Field Emitter Arrays 

3.4.1 Simulation 

Several parameters can be adjusted to avoid the above mentioned failure mechanisms 

and enhance the longevity of the tips and maximize the emission current at the same time. 

To extract the optimized parameters, a comprehensive field emission simulation was 

conducted using Synopsys Sentaurus software. By self-consistently solving the coupled 

Poisson equation, carrier continuity equations and the FN equation, the transport 
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properties under various ambient environment were obtained for a single silicon 

nanowire with different dimensions. 

Three device parameters, namely diameter, length, and carrier concentration, were 

adjusted for the purpose of obtaining the highest saturation emission current as well as 

the most effective cooling. The increment of diameter will lead to the increase of thermal 

conductivity as well as the power dissipated under the saturation regime. The length 

increase will bring about a decrease of thermal conductivity but an increase in the 

dissipated power. As carrier concentration increases, the thermal conductivity does not 

change much while the power dissipated under saturation increases significantly. 

Figure 3.6 (left) shows the final steady-state temperature for a single nanowire with 

different lengths and carrier concentrations when operating under velocity saturation 

regime. The diameter is40nm. The dashed lines represent the critical temperatures, 

which separate two distinct conduction mechanisms, for different carrier concentrations. 

As can be seen, the critical temperatures put strong restrictions on the carrier 

concentration. The only acceptable parameters for Si field emitters are nanowires with a 

carrier concentration of1 × 1013cm−3and length below3μm. Figure 3.6 (right) shows 

the steady-state temperature and emission current for devices with different radii and 

lengths. The carrier concentration is 1 × 1013cm−3 and the dashed line is the 

corresponding critical temperature. As the aspect ratio has to be maintained at least 

to50 ∶ 1 to ensure the saturation effect [80], the largest diameter is40nm, which will 

give largest possible emission current of0.2nA/tip.  

 

 



61 

 

 

Figure 3.6. (Left) Temperature as a result of operating silicon nanowire field emitters 

under saturation regime as a function of nanowire length. Dashed lines show the critical 

temperatures for different doping densities. (Right) Temperature (bottom) as a result of 

operating silicon nanowire field emitters under saturation regime as a function of 

diameter and the corresponding current single nanowire (top). 

 

In conclusion, the optimal parameters for silicon nanowires to operate as field emitters 

under the thermally stable saturation regime are: diameter of 40nm, length of 2μmand 

carrier concentration of 1 × 1013cm−3. This parameter combination will give a current 

of0.2nAper tip. 

 

3.4.2 Design and Fabrication 

Two types of silicon nanowire arrays were fabricated. The first one is an ungated two-

terminal silicon FEA. The other one is a gated three-terminal silicon FEA. The ungated 

two-terminal silicon FEAs were fabricated as below. The silicon nanowire array was 

fabricated using a top-down fabrication approach as depicted in Figure 3.7. First, a thin 

layer (30 nm) of Al2O3 was deposited and patterned using photolithography on top of a 

low-doped silicon substrate (N type, <100>, 320-480 Ω̇∙cm) to define field emitter active 

area. Then, a monolayer of silica (SiO2) nanoparticles with 200 nm average diameters 
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were deposited using a Langmuir–Blodgett (LB) deposition technique. Parameters of LB 

deposition were optimized to achieve a very dense film with few defects. A thinning 

process was performed on the silica nanoparticles by using a dry etching of SiO2 for 15 

and 30 sec. As a result, small spaces (20-50 nm) among the nanoparticles were created as 

shown in the inset of Figure 3.8. The extra space is essential for the following Si etching 

process as it allows the plasma to reach Si. A deep reactive ion etching (RIE) of Si was 

performed with silica particles used as a masking layer. As a result, long Si nanowires 

with an approximate length of 1.5 – 2 μm were created as shown in Figure 3.8. While the 

average distance of Si nanowires is set by the diameters of silica nanoparticles (~200 nm), 

the diameters of Si nanowires depend on the thinning process of silica nanoparticles and 

dry etching conditions of silicon.  The silica nanoparticles were removed using Buffered 

Oxide Etch (BOE). A commercial 40 µm PET film was used as a spacer between the 

silicon nanowires and the top anode metal. However, to reduce the gap further, a 10 µm 

SU-8 was deposited and patterned, to form an alternate approach for the spacer between 

the Si nanowires and the top Anode metal. The final shape of the nanowire can be well 

controlled by both silica thinning process as well as the Si dry etching process. In Figure 

3.9, the left figure of type (I) sample is achieved by using a thinning process that lasted 

15 sec, leading to sharper tips compared to the right figure of type (II) sample achieved 

with 30 sec of silica thinning process.  
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Figure 3.7. The fabrication process of silicon FEAs 

 

 

Figure 3.8. An SEM image of the silicon FEA. The inset is an SEM image of silica 

particles deposited on top of silicon wafer by LB process. The white bars are 1µm in 

length. 
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Figure 3.9. Two SEM images of silicon FEA with different tip curvatures. Type (I) 

sample was achieved by using 30s thinning time of silica particles while Type (II) was 

thinned for 15s. The white bars are 1µm in length. 

 

The gated three-terminal silicon FEAs were fabricated in a similar way as the ungated 

devices with some modifications and steps to the process as follows. In the above 

ungated two-terminal silicon FEAs, after the silica particles were remove by BOE, a 1 

µm layer of SiO2 is deposited onto the wafer to act as a spacer between the cathode and 

the gate terminal. Then the SiO2 was planarized. Nickel and Aluminum metals with a 

thickness of 150 nm and 100 nm were deposited onto the SiO2 with the gate pattern layer 

on the photomask using an e-beam evaporator. An SEM image of the patterned metal 

gate is shown in Figure 3.10 (left). Then, another dry etch step was performed to expose 

silicon nanowires. The top anode was fabricated with glass, on which metals Nickel and 

gold with thickness of 100 nm and 70 nm, respectively, were deposited. Then, a layer of 

SU-8 with a thickness of 5-10 µm was deposited onto the glass. This step is followed by 

a photolithography development step to open a window of the SU-8 layer such that the 

metal anode is exposed. The final anode structure with SU-8 spacer is depicted in Figure 

3.10 (right). 

( ) ( )
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Figure 3.10. (Left) The fabricated Nickel/Aluminum pattern on top of wafer used as the 

gate in three-terminal silicon FEAs. (Right) The metal anode of the three-terminal FEAs 

with a 10 µm SU 8 acting as a spacer between the gate and anode. 

 

After the wafer with the gate and the glass with the anode fabricated, the two pieces 

were affixed together with an optical glue followed by a 5-minute exposure to UV light. 

The final sample was then mounted on a printed circuit board with the three terminals 

soldered to form electrical connections to the measurement system. 

 

3.4.3 Device Characterization 

The measurements for ungated two-terminal devices were performed inside a vacuum 

system at a vacuum level of 10-7 to 10-8 torr. A voltage was applied between the substrate 

(Cathode) and the top Anode metal (molybdenum) while emission current was measured 

by a pico-ampere meter. The gap between the tip of Si nanowires and the anode is set by 

the thickness of the PET film (nominal 50 µm). Figure 3.11 depicts the measurement 

result for three Type I samples (30 sec of thinning process). The turn-on voltage is around 

400V. Although only three samples are shown here, the process is highly repeatable. The 
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inset of Figure 3.11 is the corresponding Fowler-Nordheim (FN) plot. Figure 3.12 is 

measured FN plots for various samples. The samples are from two categories: one with 

30 sec silica thinning time (Type I), and the other with 15 sec (Type II). Two different 

FN slopes are observed. Sharp FEA tips fabricated using the 30 second silica thinning 

process have a slope of 3.2 A/kV·cm2. Tips fabricated with only 15 second of silica 

thinning process are not as sharp and achieve an FN slope of 8.4 A/kV·cm2. This 

observation is consistent with FN theory in which, the slope is inversely proportional to 

the field enhancement factor. Sharper tips have a larger field enhancement factor, thus a 

smaller slope. The red curves correspond to a FEA device with a small effective emission 

area of 10-5 cm2, thus they have lower current than the blue curves that correspond to 

devices with an active emission area of 0.02 cm2. However, the current density FN plots 

with different areas are similar, as shown in the figure. 

In order to further reduce the turn-on voltage, the PET film was replaced by a 10 µm 

SU-8 spacer that was deposited and patterned on the sample. An active window is 

defined by the deposited SU-8 spacer. Figure 3.13 depicted the measured emission 

characteristics of a sample with an active area 250 µm by 250 µm. The turn-on voltage is 

about 20 V with a current density of 1.6 A/cm2 at an electric field of 8 V/µm. To be best 

of the author’s knowledge, this value is the highest current density ever reported for 

silicon FEAs in literature. Table 3.2 is a comparison of the measured current density 

between the device in this work and the published works. 
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Figure 3.11. Measurement result of ungated two-terminal silicon FEA for different 

samples. The inset is the corresponding FN plot. The solid line is fit to the data. All three 

are Type (I) samples in Figure 3.9. 

 

 

Figure 3.12. FN plots of various silicon FEAs. The solid lines are fit to the data. Type (I) 

and (II) curves correspond to samples in Figure 3.9, respectively. 

 

 

 

 

|Slope| ~ 
8.8 A/kV

( )
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Figure 3.13. (Left) An SEM image of silicon FEAs with tips thinned further to 50 nm in 

diameter on average. (Right) The measured IV characteristics with a 10 µm SU-8 spacer 

showing an improved turn-on voltage of 20 V and a current density of 1.6 A/cm2 at 8 

V/µm. 

 

Table 3.2. A comparison of field emission measurement results between the device in this 

work with other published works. 

Reference Current Density Dimensions Gap Material 

[44] 0.4 A/cm@14 V/µm  1 mm SiC 

[74] 200 uA/ cm2@40 V/µm 100 nm 25 µm Si 

[38] 480 mA/cm2@64 V/µm 1 um 25 µm Si 

[81] 10 µA/cm2@16 V/µm 45 nm 25 µm MWCNTs 

[43] 1 mA/cm2@4.7 V/µm   ZnO 

[82] 70 mA/cm2@5 V/µm   CNT 

This work 1.6 A/cm2@8 V/µm 50-70 nm 10 µm Si NW 
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The gated three-terminal FEAs were measured in the same measurement system with 

the same vacuum level. A fixed voltage was applied to the gate and the substrate was 

grounded while the anode was ramped from 0 to 400 V in steps of 5 V. This sweep was 

repeated for different fixed gate voltages. The measurement result is shown in Figure 

3.14. As can be seen from the figure, the emission current is well controlled by the gate 

voltage. With a higher gate voltage, more electrons will be absorbed by the gate such that 

less electrons reach the anode metal leading to a decrease in the emission current level. 

For a gate voltage of 25 V in the current configuration, no current is registered at the 

anode. Figure 3.15 depicts the corresponding FN plot.  

 

 

Figure 3.14. The measured IV characteristics of the gated three-terminal FEAs. The right 

figure is a zoom-in of the left figure with gate voltages of 0 V and 2 V omitted. 
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Figure 3.15. FN plot of the measured IV characteristics of the gated three-terminal FEAs. 

 

3.5 Conclusion 

In this section, vacuum devices based on silicon FEAs were presented. The proposed 

solution overcomes various obstacles that current silicon based FEAs suffer from. A new 

self-assembly technique, LB deposition, has been introduced to fabricate silicon FEAs 

without using e-beam lithography, leading to very low-cost fabrication of such devices. 

Silicon nanowire FEAs fabricated with this technique are dense (~75% fill factor), highly 

repeatable and low-cost. By utilizing thinning of silica particles during the fabrication, 

the structure and the corresponding emission characteristics are tuned. Furthermore, a 

comprehensive TCAD simulation was performed to extract the optimal device parameters, 

such as channel length, width and carrier concentration. With such optimized parameters, 

the FEAs can achieve thermal stability and achieve the highest possible current density. 
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The ungated two-terminal FEAs and gated three-terminal FEAs were fabricated and 

characterized in a vacuum system. A record high current density of 1.6 A/cm2 has been 

achieved. Also emission current modulation was demonstrated with a meshed gate 

structure in the three terminal FEAs. The idea of current control through the current 

saturation mechanism of each individual silicon nanowire has been investigated. In fact, 

the high current density of 1.6 A/cm2 achieved is the outcome of the current limiting 

mechanism of the sharper tips. This current limiting mechanism can be further proved 

with a lifetime measurement, which will be left for the future work as discussed in the 

last chapter of this thesis.  
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CHAPTER 4. NANO-ELECTRO-MECHANICAL SYSTEMS 

4.1 Introduction 

In this chapter, two main topics about nano-electromechanical systems (NEMS) are 

addressed. In the first section, two types of NEMS systems based on CMOS platform are 

investigated. Optical and electrical characterization techniques are performed on these 

devices that are fabricated using the GlobalFoundries 45 nm CMOS SOI technology and 

are post-processed using a recently developed technology at Purdue [83]. In the second 

section, the compact modeling of double-clamped double-gated silicon NEMS resonators 

is discussed. 

4.2 CMOS NEMS Resonator Characterization 

4.2.1 Metal Grid Plate NEMS Resonator 

A metal grid plate was designed as a mechanical structure on the CMOS platform and 

was post-processed as depicted in the inset of Figure 4.1. The mechanical part was 

designed with the metal layers on GlobalFoundries 45nm CMOS SOI technology and 

was further released with a wet etching post-processing recipe such that the body of the 

mechanical part is released while the two ends are anchored. The plate is made of copper 

with dimensions of 5.40 µm (Length)×4.82 µm (Width)×136 nm (Thickness). Below the 

copper is the silicon substrate, which acts as a bottom gate that can couple to the metal 

plate. The left figure of Figure 4.1 depicts the characterization diagram. The device was 
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driven by an AC signal generated by a signal generator. An additional DC bias was 

applied to the plate to enhance the electrical forcing between the silicon substrate and the 

device. A Doppler Laser Vibrometer (DLV), which can detect pico-meter level 

displacement, was used to characterize the out-of-plane motion of the device. The right 

figure of Figure 4.1 shows the measured frequency response of the displacement when 

both DC and AC excitations are present. A clear resonant peak was observed at around 

11 MHz. This peak is consistent with different AC and DC excitation configurations as 

shown with different symbols. The resonant peak only appeared in the released plates 

verifying the mechanical vibration of the plate. 

 

 

 

Figure 4.1. (Left) The testing scheme of post-processed metal grid mechanical resonator. 

(Right) DLV optical measurement result of the metal grid resonator. Different symbols 

are results with different AC and DC excitation configurations. (Inset) An SEM of the 

resonator with dimensions: 5.396µm×4.82µm×136nm 
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Figure 4.2. (Left) An SEM image of the H-shape resonator and the testing scheme.        

AM: amplitude modulated signal, Lock-in: lock-in amplifier. (Right) The corresponding 

measured frequency response. 

 

4.2.2 H-shape Resonator  

The second CMOS-NEMS resonator designed, post-processed and characterized is an 

H-shape resonator as depicted on the left SEM image of Figure 4.2. The resonator was 

anchored at four ends while a vertical beam lies in between the two parallel horizontal 

beams. Also, a side gate is placed close to one of the horizontal beams, which can be used 

either to drive the entire structure or to sense the vibration. The H-shape resonator is also 

a metal beam made of copper. The measurement diagram is shown in the left figure of 

Figure 4.2. The beam has a width of only 70 nm. An electrical driving and electrical 

sensing method was adopted as follows. An amplitude modulated (AM) AC signal with a 

DC bias was applied to the gate while a lock-in amplifier was used to detect the electrical 

response of the beam. The signal generator, which was used to generate the AM signal 

was configured such that the modulation index (𝑚) is 0.5 and the modulation frequency 

𝑓𝑚  is 1 kHz, while the carrier frequency 𝑓𝑐  was swept around the frequency range of 
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interest, which is around the natural frequency of the device. The lock-in amplifier was 

configured to measure the signal at 1 kHz. This measurement technique filtered out most 

of the feedthrough signals such that the weak signal coming from the resonator was much 

less noisy and had no background signal. The measurement result is shown as the right 

figure of Figure 4.2. Two adjacent peaks with about a 60 degree phase change were 

present indicating that different resonant modes were induced, which was expected from 

the simulation result. However, due to the process variation and the error caused by the 

dimension measurements, the measured result does not match the simulation result 

quantitatively. 

 

   

Figure 4.3. (Left) An SEM picture of a representative silicon resonator [84]. (Right) 

Diagram of the measurement setup [85] 
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Figure 4.4. Measured magnitude (left) and phase (right) frequency response of the 

double-clamped silicon resonator [86] 

 

4.3 Compact Modeling of Double-Clamped Silicon Resonators 

4.3.1 Experimentation and Characterization 

A double-clamped double-gated silicon resonator on SOI platform, which was 

fabricated and characterized in [84], was modeled. The structure of the resonator is 

shown in the left picture of Figure 4.3 and the measurement setup is shown in the right 

figure. The measurement setup is very similar to the previous setup that was used for the 

H-shape resonator characterization, except that three-terminal measurement was used 

here. An AM signal was applied to the drain (D) terminal. A lock-in amplifier was used 

at the source terminal to measure the current at the modulation frequency. A DC bias was 

applied to the gate. Figure 4.4 is the measured magnitude and phase frequency response 

of the device. Detailed discussions about the fabrication and characterization of this 

device are in [84]. In the following sections, a physics based compact model about this 

device is presented. 



77 

 

4.3.2 Mechanical Equation of Motion 

The beam mechanical equation is based on classical Bernoulli-Euler beam model with 

residual tension, 𝑁1, and midplane stretching [86] 

   

 

where 𝐿, 𝑤 and ℎ are the length, width, and thickness of the beam. 𝜌 is the mass density. 

𝐸 is the modulus of elasticity for the material. 𝑦(𝑥, 𝑡) is the deflection of the beam at time 

𝑡 and a distance along the beam, 𝑥. 𝑐 is the specific viscous damping coefficient. 𝐼 =

1

12
𝑤ℎ3 is the moment of inertia for out-of-plane motion. 

4.3.3 Forcing Model 

Electrostatic force between the beam and gate per unit length can be described by: 

𝐹𝑝𝑝(𝑥, 𝑡) =
𝜖0𝑤𝑉𝑔𝑎𝑝

2 (𝑥,𝑡)

[𝑔−𝑦(𝑥,𝑡)]2
                                           (4.2) 

where 𝑉𝑔𝑎𝑝(𝑥, 𝑡) is the instantaneous potential difference between the gate and the beam 

at some distance along the beam, 𝑥. 𝑔 is the nominal gap size. Equation (4.2) is used to 

describe the force between two surfaces with uniform gap and potential difference. For 

deflected beams, the electrostatic forcing through an improved capacitance model can be 

written as: 

𝐹 =
1

2
𝑉𝑔𝑎𝑝
2 𝜕𝐶

𝜕𝑦
                                                  (4.3) 

where 𝐶  is the capacitance between the beam and the gate. The forcing model is 

expanded in a Taylor series around 𝑧 = 0, keeping terms up to 𝑧3. The final forcing 

equation is, 

(4.1) 
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𝐹(𝑡) =
𝜖0𝑤𝑉

2(𝑡)

90𝑔5
[𝑓0 + 𝑓1𝑧(𝑡) + 𝑓2𝑧

2(𝑡) + 𝑓3𝑧
3(𝑡)]              (4.4) 

where the geometric parameters 𝑓0, 𝑓1, 𝑓2 and 𝑓3 are defined in table 2. 

4.3.4 Capacitance Modulation 

During operation, the beam and gate act as a variable capacitor, allowing AC current 

flow through them. Following the above discussion, the capacitance could be described 

as, 

𝐶(𝑡) =
𝜖0𝐿

𝑔
[𝐿 + 𝑘1𝑧(𝑡) + 𝑘2𝑧

2(𝑡) + 𝑘3𝑧
3(𝑡)] 

The charge at time𝑡 is 

𝑄(𝑡) = 𝐶(𝑡)𝑉𝑔𝑎𝑝(𝑡) 

The current is given by 

𝑖(𝑡) =
𝑑𝑄

𝑑𝑡
 

𝑖𝑐𝑎𝑝(𝑡) =  �̇�(𝑡)𝑉𝑔𝑎𝑝(𝑡) + 𝐶(𝑡)�̇�𝑔𝑎𝑝(𝑡) 

This is the current contribution from the variable capacitance with the gate. 

4.3.5 Piezoresistive Effect 

The resistance of the beam will change when the beam deflects, which will contribute 

to the total current. The axial strain from mid-plane stretching is  

𝜖(𝑡) =
1

2𝐿
∫ [

𝜕𝑦(𝑥, 𝑡)

𝜕𝑥
]

2

𝑑𝑥 = 2.44 [
𝑧(𝑡)

𝐿
]

2𝐿

0
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Table 4.1. Coefficients – Dimensional Form [86] 
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With the transverse and shear stresses neglected, the beam resistance could be described 

as 

𝑅𝑏𝑒𝑎𝑚(𝑡) = 𝑅0[1 + 𝜖(𝑡)𝐺𝑅] 

where 𝑅0 =
𝜌𝑟𝐿

𝑤ℎ
 is the nominal beam resistance, 𝐺𝑅 is the resistance gauge factor given by,  

𝐺𝑅 = 1 + 2𝜈 + 𝐸𝜋𝐿 

which accounts for both geometric effects, 1 + 2𝜈  ( 𝜈  is Poisson’s ratio) and 

piezoresistive effects, represented by 𝐸𝜋𝐿. 𝜋𝐿 is the effective longitudinal piezoresistive 

coefficient, which has a dependence on crystal orientation and other parameters such as 

doping and temperature. With all these effects accounted, the final beam resistance 

equation can be described as, 

𝑅𝑏𝑒𝑎𝑚(𝑡) =
𝜌𝑟𝐿

𝑤ℎ
{1 + 2.44 [

𝑧(𝑡)

𝐿
]

2

(1 + 2𝜈 + 𝐸𝜋𝐿)} 

which depends on the beam deflection. 

 

4.3.6 Equivalent Circuit Representation 

Figure 4.5 is the equivalent circuit representation of the beam and the measurement 

setup. There are variable capacitors between gates and beam and piezoresistors for each 

half of the beam. The equations that describe the variable capacitances and beam 

piezoresistances can be found above. When the device operates, there will be two AC 

currents flowing into the source, one from the drain, the other from the gate. These 

currents are modulated by how the beam deflects and both contribute to the output 

current.  
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Figure 4.5. Equivalent circuit representation of the beam and measurement setup 

 

4.3.7 Simulation 

Figure 4.5 shows the experimental testing circuit as well as the simulation testbench 

circuit. An AC signal (modulated or not) is applied to the drain of the beam while the 

source is connected into a lock-in amplifier. A DC voltage is applied to the gate. Various 

parasitic are considered here, including the wire capacitance, wire resistance, contact 

resistance, leakages and so on. Output current/voltage at the lock-in amplifier is measured.  

For the circuit simulation, spectreRF harmonic balance solver is used. For this 

simulation that requires high accuracy, a conservative accuracy is set. Also, in the 

simulator option, the relative tolerance (reltol), voltage absolute tolerance (vabstol) and 

current absolute tolerance (iabstol) is set to be 10-8. To help the convergence, the 

transient-aided HB (tstab) is set to be 10-4s.  
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Figure 4.6. Frequency response of the beam driven by a single-tone excitation. Red line is 

the magnitude. Blue line is the phase. 

 

4.3.7.1 Single-tone excitation 

This is a test of the system driven by a single tone AC excitation. Beam dimension is 4 

μm in length, 110nm in thickness, 180nm in width while the gap between the beam and 

gate is 144nm. Figure 4.6 is the frequency response under a 40𝑚𝑉𝑟𝑚𝑠 AC excitation and 

6V DC back gate bias. This simulation is to measure the output voltage across resistor of 

the lock-in amplifier under different sweeping frequencies. A clear resonant peak and 

phase change is observed at 64.4 MHz. 

4.3.7.2 Multi tone simulation 

This is a test of the system driven by an amplitude modulated (AM) AC signal. Beam 

dimension is 5.9 μm in length, 110 nm in thickness, 180 nm in width while the gap 

between the beam and gate is 144nm. Figure 4.7 is the frequency response. The 
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modulation factor (M) is 0.5 and the modulation frequency is 1kHz. The amplitude of the 

carrier signal is 40𝑚𝑉𝑟𝑚𝑠 . 6V DC is applied to the back gate. The simulation is to 

measure the output current under the modulated frequency 1kHz, while the carrier 

frequency is swept around the natural frequency. Also, under this excitation condition 

and bias condition, strong nonlinearity and hysteresis start to emerge. 

 

 

Figure 4.7. Frequency response of the beam under an amplitude modulation excitation. 

Frequency response of magnitude (left) and phase (right) of the output current at 

modulated frequency 1kHz. Red curves are the response when the carrier frequency is 

up-swept while the black curves is down-swept 

 

 

4.4 Conclusion 

Two types of CMOS integrated NEMS resonators were designed, fabricated and 

characterized using optical and electrical characterization techniques. The results 

indicated promising future for NEMS integration within the CMOS platform. Also, a 

compact model for double-clamped silicon nanoresonator is constructed. The model 

covers capacitive modulation and piezoresistive effect, which are the two dominant 
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effects in nanoresonators. This model is also able to capture various linear and nonlinear 

behaviors and hysteresis effect, which may be critical in some practical applications. 
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CHAPTER 5. FUTURE WORK 

5.1 Process Design Kit (PDK) 

A comprehensive NMOS model that predicts DC, RF and noise behavior on the 

GlobalFoundries 45 nm CMOS SOI platform has been completed. In the future, there are 

several aspects that need to be addressed as follows. 

1) Extend this NMOS model to cover more physical effect, such as kink effect, 

various breakdown mechanisms, such as source-drain reach-through, source-drain 

breakdown and gate oxide breakdown, low-frequency noise, lifetime and 

statistical variations of various device parameters; 

2) Extend the NMOS model to predict the PMOS behavior; 

3) Construct the models for passive elements, such as resistors, inductors, capacitors, 

coupled lines, and transmission lines, etc. 

4) Construct a process design kit (PDK) for this technology based on the compact 

models on active and passive devices; 

5) Further verify the accuracy, efficiency, performance of the PDK models through a 

more complex RF systems design. 



86 

 

5.2 High Frequency Nano-Vacuum Tube Devices 

In this thesis, an integrated silicon FEA-based vacuum transistor has been 

demonstrated for the first time. A low-turn on voltage of 20 V and a high current density 

of 1.6 A/cm2 have been achieved. However, with proper tip sharpening, an ideal current 

saturation with a current density of 16 A/cm2 is expected with a low turn-on voltage of 

less than 5 V. This level of current density and the aforementioned individual current 

control through current saturation mechanism need to be verified. In the future, the high 

resistivity substrate needs to be replaced with a highly doped substrate with a low-doped 

cap layer such that the current control only appears at each individual silicon nanowire 

and not in the bulk of the substrate. Also, a comprehensive lifetime study should be 

performed for devices that demonstrate such current saturation mechanism. 

The aim of vacuum transistor was to achieve a high current density device for high 

frequency and high power transistor application. Furthermore, CMOS-integration is a key 

advancement for this device to enter the market. Similar devices have been designed on 

the GlobalFoundries 45 nm CMOS SOI platform as shown in Figure 5.1 (left). The 

silicon emitter tips have a dimension of 140 nm by 140 nm. The device was post-

processed to release the silicon emitters as depicted in Figure 5.1 (right). Through post-

processing, the tips can be further thinned down to less than 10 nm. Also, two layers from 

the CMOS Back-End-of-Line (BEOL) were used as the gate and anode electrodes. The 

DC and high frequency characterizations are yet to be performed on these devices. Given 

the device dimensions in this technology, a rough estimate of a cut-off frequency 1.2 THz 

and maximum oscillation frequency of 2.2 THz may be achievable. Also, this device is 

expected to deliver 10-100 Watts at ~100 GHz. 
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Figure 5.1. Vacuum transistors implemented on the GlobalFoundries 45 nm CMOS SOI 

platform (left) and an SEM image of the device after post-processed to release the silicon 

emitters (right). 

 

 

 

Figure 5.2. Implementation of silicon FEAs with transparent monolayer graphene gate 

before placing anode (left) and after adding anode (right). 

 

Another direction to pursue is to replace the metal mesh gate with a transparent 

Graphene gate as depicted in Figure 5.2. Free-standing suspended Graphene has been 
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demonstrated to be largely transparent to and unaffected by an electron beam with an 

energy of 30 keV. Compared to its metal counterpart, Graphene gate will have a much 

higher anode collection efficiency, leading to a higher cut-off frequency and maximum 

oscillation frequency.  

 

5.3 Future Nano-Electromechanical Sensing Systems 

For the future research on NEMS devices, there are two directions that can be pursued, 

namely experimentation and modeling. In the experimentation part, a more complex mass 

sensing system or signal processing system can be designed on this CMOS platform. For 

example, a brand new type of NEMS resonators was designed as shown in Figure 5.1. In 

this design, a number of double-clamped resonators acting as band-reject resonators and 

filters work to null undesired frequencies of a receiver module. In addition to these 

resonators, an output amplifier that mimics the receiver and shows a flat gain for the 

frequency range of interest, such that very weak signals can be detected was designed as 

shown in Figure 5.2. For the characterization, an AC signal will be applied to the middle 

of a transmission line in between the resonators and a DC bias will be applied to the 

resonators. After the beams are released with the above simple post-processing 

fabrication steps, an electrical force between the transmission line and the resonator will 

be induced by both the AC signal and DC signal applied to the beams. Some portion of 

the AC power at the frequencies of resonance of these beams will be passed through the 

coupling capacitors with the beams. So a notch-type response at the resonant frequency is 

expected at the output of the amplifier. Also, a series of resonators with different 

dimensions along the transmission line were carefully designed and engineered such that 
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some of them have close resonant frequencies, which will lead to their interaction as a 

multi-pole filter. Another flexibility in terms of tuning is the inherent resonant frequency 

shift due to the spring softening/hardening effect caused by the DC bias. The band-reject 

resonators together with a well-designed low noise amplifier makes a mechanical RF 

front end receiver, which will have much higher quality factor compared to its electrical 

alternatives. Furthermore, this level of CMOS integration helps with the advancement of 

SoC integration. Such studies provide us with the opportunity to investigate the signal 

processing application of the device. 

With regards to the modeling effort, the current compact model of the double-clamped 

resonator only predicts the behavior in a qualitative sense. In the future, this model can be 

extended to a quantitative matching as in the final circuit design scenario, where the 

qualitative analysis is not enough. Also, the current model aims at silicon-based 

resonators. A model that can predict the behavior of metal resonators is crucial for the 

CMOS applications. Effects, such as spring softening/hardening effect, piezoresistive 

effect, etc, will need to be modified in modeling of such devices. 
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Figure 5.3. A diagram showing the transmission line resonators with testing scheme. The 

yellow parts are the resonators with different dimensions. The red line is the input line for 

the amplifiers. The blue boxes are the anchors for the resonators. 

 

 

 

Figure 5.4. Circuit schematic of an output amplifier for the nano-resontors (left) and 

simulated S-parameters of the amplifier (right). 
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