563 research outputs found

    VLSI Design

    Get PDF
    This book provides some recent advances in design nanometer VLSI chips. The selected topics try to present some open problems and challenges with important topics ranging from design tools, new post-silicon devices, GPU-based parallel computing, emerging 3D integration, and antenna design. The book consists of two parts, with chapters such as: VLSI design for multi-sensor smart systems on a chip, Three-dimensional integrated circuits design for thousand-core processors, Parallel symbolic analysis of large analog circuits on GPU platforms, Algorithms for CAD tools VLSI design, A multilevel memetic algorithm for large SAT-encoded problems, etc

    Recent Application in Biometrics

    Get PDF
    In the recent years, a number of recognition and authentication systems based on biometric measurements have been proposed. Algorithms and sensors have been developed to acquire and process many different biometric traits. Moreover, the biometric technology is being used in novel ways, with potential commercial and practical implications to our daily activities. The key objective of the book is to provide a collection of comprehensive references on some recent theoretical development as well as novel applications in biometrics. The topics covered in this book reflect well both aspects of development. They include biometric sample quality, privacy preserving and cancellable biometrics, contactless biometrics, novel and unconventional biometrics, and the technical challenges in implementing the technology in portable devices. The book consists of 15 chapters. It is divided into four sections, namely, biometric applications on mobile platforms, cancelable biometrics, biometric encryption, and other applications. The book was reviewed by editors Dr. Jucheng Yang and Dr. Norman Poh. We deeply appreciate the efforts of our guest editors: Dr. Girija Chetty, Dr. Loris Nanni, Dr. Jianjiang Feng, Dr. Dongsun Park and Dr. Sook Yoon, as well as a number of anonymous reviewers

    Factories of the Future

    Get PDF
    Engineering; Industrial engineering; Production engineerin

    Factories of the Future

    Get PDF
    Engineering; Industrial engineering; Production engineerin

    Programming a paintable computer

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2002.Includes bibliographical references (p. 163-169).A paintable computer is defined as an agglomerate of numerous, finely dispersed, ultra-miniaturized computing particles; each positioned randomly, running asynchronously and communicating locally. Individual particles are tightly resource bound, and processing is necessarily distributed. Yet computing elements are vanishingly cheap and are regarded as freely expendable. In this regime, a limiting problem is the distribution of processing over a particle ensemble whose topology can vary unexpectedly. The principles of material self-assembly are employed to guide the positioning of "process fragments" - autonomous, mobile pieces of a larger process. These fragments spatially position themselves and reaggregate into a running process. We present the results of simulations to show that "process self-assembly" is viable, robust and supports a variety of useful applications on a paintable computer. We describe a hardware reference platform as an initial guide to the application domain. We describe a programming model which normatively defines the term process fragment and which provides environmental support for the fragment's mobility, scheduling and data exchange. The programming model is embodied in a simulator that supports development, test and visualization on a 2D particle ensemble. Experiments on simple combinations of fragments demonstrate robustness and explore the limits of scale invariance. Process fragments are shown interacting to approximate conservative fields, and using these fields to implement scaffolded and thermodynamic self-assembly.(cont.) Four applications demonstrate practical relevance, delineate the application domain and collectively illustrate the paintable's capacity for storage, communication and signal processing. These four applications are Audio Streaming, Holistic Data Storage, Surface Bus and Image Segmentation.by William Joseph Butera.Ph.D

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    Advanced Applications of Rapid Prototyping Technology in Modern Engineering

    Get PDF
    Rapid prototyping (RP) technology has been widely known and appreciated due to its flexible and customized manufacturing capabilities. The widely studied RP techniques include stereolithography apparatus (SLA), selective laser sintering (SLS), three-dimensional printing (3DP), fused deposition modeling (FDM), 3D plotting, solid ground curing (SGC), multiphase jet solidification (MJS), laminated object manufacturing (LOM). Different techniques are associated with different materials and/or processing principles and thus are devoted to specific applications. RP technology has no longer been only for prototype building rather has been extended for real industrial manufacturing solutions. Today, the RP technology has contributed to almost all engineering areas that include mechanical, materials, industrial, aerospace, electrical and most recently biomedical engineering. This book aims to present the advanced development of RP technologies in various engineering areas as the solutions to the real world engineering problems
    • …
    corecore