779 research outputs found

    A timely computer-aided detection system for acute ischemic and hemorrhagic stroke on CT in an emergency environment

    Get PDF
    Standalone Presentations: no. LL-IN1105BACKGROUND: When a patient is accepted in the emergency room suspected of stroke, time is of the most importance. The infarct brain area suffers irreparable damage as soon as three hours after the onset of stroke symptoms. Non-contrast CT scan is the standard first line of investigation used to identify hemorrhagic stroke cases. However, CT brain images do not show hyperacute ischemia and small hemorrhage clearly and thus may be missed by emergency physicians. We reported a timely computer-aided detection (CAD) system for small hemorrhages on CT that has been successfully developed as an aid to ER physicians to help improve detection for Acute Intracranial Hemorrhage (AIH). This CAD system has been enhanced for diagnosis of acute ischemic stroke in addition to hemorrhagic stroke, which becomes a more complete and clinically useful tool for assisting emergency physicians and radiologists. In the detection algorithm, brain matter is first segmented, realigned, and left-right brain symmetry is evaluated. As in the AIH system, the system confirms hemorrhagic stroke by detecting blood presence with anatomical and medical knowledge-based criteria. For detecting ischemia, signs such as regional hypodensity, blurring of grey and white matter differentiation, effacement of cerebral sulci, and hyperdensity in middle cerebral artery, are evaluated …published_or_final_versio

    Surgical GPS Proof of Concept for Scoliosis Surgery

    Get PDF
    Scoliotic deformities may be addressed with either anterior or posterior approaches for scoliosis correction procedures. While typically quite invasive, the impact of these operations may be reduced through the use of computer-assisted surgery. A combination of physician-designated anatomical landmarks and surgical ontologies allows for real-time intraoperative guidance during computer-assisted surgical interventions. Predetermined landmarks are labeled on an identical patient model, which seeks to encompass vertebrae, intervertebral disks, ligaments, and other soft tissues. The inclusion of this anatomy permits the consideration of hypothetical forces that are previously not well characterized in a patient-specific manner. Updated ontologies then suggest procedural directions throughout the surgical corridor, observing the positioning of both the physician and the anatomical landmarks of interest at the present moment. Merging patient-specific models, physician-designated landmarks, and ontologies to produce real-time recommendations magnifies the successful outcome of scoliosis correction through enhanced pre-surgical planning, reduced invasiveness, and shorted recovery time

    Towards case-based medical learning in radiological decision making using content-based image retrieval

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Radiologists' training is based on intensive practice and can be improved with the use of diagnostic training systems. However, existing systems typically require laboriously prepared training cases and lack integration into the clinical environment with a proper learning scenario. Consequently, diagnostic training systems advancing decision-making skills are not well established in radiological education.</p> <p>Methods</p> <p>We investigated didactic concepts and appraised methods appropriate to the radiology domain, as follows: (i) Adult learning theories stress the importance of work-related practice gained in a team of problem-solvers; (ii) Case-based reasoning (CBR) parallels the human problem-solving process; (iii) Content-based image retrieval (CBIR) can be useful for computer-aided diagnosis (CAD). To overcome the known drawbacks of existing learning systems, we developed the concept of image-based case retrieval for radiological education (IBCR-RE). The IBCR-RE diagnostic training is embedded into a didactic framework based on the Seven Jump approach, which is well established in problem-based learning (PBL). In order to provide a learning environment that is as similar as possible to radiological practice, we have analysed the radiological workflow and environment.</p> <p>Results</p> <p>We mapped the IBCR-RE diagnostic training approach into the Image Retrieval in Medical Applications (IRMA) framework, resulting in the proposed concept of the IRMAdiag training application. IRMAdiag makes use of the modular structure of IRMA and comprises (i) the IRMA core, i.e., the IRMA CBIR engine; and (ii) the IRMAcon viewer. We propose embedding IRMAdiag into hospital information technology (IT) infrastructure using the standard protocols Digital Imaging and Communications in Medicine (DICOM) and Health Level Seven (HL7). Furthermore, we present a case description and a scheme of planned evaluations to comprehensively assess the system.</p> <p>Conclusions</p> <p>The IBCR-RE paradigm incorporates a novel combination of essential aspects of diagnostic learning in radiology: (i) Provision of work-relevant experiences in a training environment integrated into the radiologist's working context; (ii) Up-to-date training cases that do not require cumbersome preparation because they are provided by routinely generated electronic medical records; (iii) Support of the way adults learn while remaining suitable for the patient- and problem-oriented nature of medicine. Future work will address unanswered questions to complete the implementation of the IRMAdiag trainer.</p

    The Empirical Foundations of Teleradiology and Related Applications: A Review of the Evidence

    Full text link
    Introduction: Radiology was founded on a technological discovery by Wilhelm Roentgen in 1895. Teleradiology also had its roots in technology dating back to 1947 with the successful transmission of radiographic images through telephone lines. Diagnostic radiology has become the eye of medicine in terms of diagnosing and treating injury and disease. This article documents the empirical foundations of teleradiology. Methods: A selective review of the credible literature during the past decade (2005?2015) was conducted, using robust research design and adequate sample size as criteria for inclusion. Findings: The evidence regarding feasibility of teleradiology and related information technology applications has been well documented for several decades. The majority of studies focused on intermediate outcomes, as indicated by comparability between teleradiology and conventional radiology. A consistent trend of concordance between the two modalities was observed in terms of diagnostic accuracy and reliability. Additional benefits include reductions in patient transfer, rehospitalization, and length of stay.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140295/1/tmj.2016.0149.pd

    Simulation of Subject Specific Bone Remodeling

    Get PDF

    Computer-aided image quality assessment in automated 3D breast ultrasound images

    Get PDF
    Automated 3D breast ultrasound (ABUS) is a valuable, non-ionising adjunct to X-ray mammography for breast cancer screening and diagnosis for women with dense breasts. High image quality is an important prerequisite for diagnosis and has to be guaranteed at the time of acquisition. The high throughput of images in a screening scenario demands for automated solutions. In this work, an automated image quality assessment system rating ABUS scans at the time of acquisition was designed and implemented. Quality assessment of present diagnostic ultrasound images has rarely been performed demanding thorough analysis of potential image quality aspects in ABUS. Therefore, a reader study was initiated, making two clinicians rate the quality of clinical ABUS images. The frequency of specific quality aspects was evaluated revealing that incorrect positioning and insufficiently applied contact fluid caused the most relevant image quality issues. The relative position of the nipple in the image, the acoustic shadow caused by the nipple as well as the shape of the breast contour reflect patient positioning and ultrasound transducer handling. Morphological and histogram-based features utilized for machine learning to reproduce the manual classification as provided by the clinicians. At 97 % specificity, the automatic classification achieved sensitivities of 59 %, 45 %, and 46 % for the three aforementioned aspects, respectively. The nipple is an important landmark in breast imaging, which is generally---but not always correctly---pinpointed by the technicians. An existing nipple detection algorithm was extended by probabilistic atlases and exploited for automatic detection of incorrectly annotated nipple marks. The nipple detection rate was increased from 82 % to 85 % and the classification achieved 90 % sensitivity at 89 % specificity. A lack of contact fluid between transducer and skin can induce reverberation patterns and acoustic shadows, which can possibly obscure lesions. Parameter maps were computed in order to localize these artefact regions and yielded a detection rate of 83 % at 2.6 false positives per image. Parts of the presented work were integrated to clinical workflow making up a novel image quality assessment system that supported technicians in their daily routine by detecting images of insufficient quality and indicating potential improvements for a repeated scan while the patient was still in the examination room. First evaluations showed that the proposed method sensitises technicians for the radiologists' demands on diagnostically valuable images

    Digital Pathology: The Time Is Now to Bridge the Gap between Medicine and Technological Singularity

    Get PDF
    Digitalization of the imaging in radiology is a reality in several healthcare institutions worldwide. The challenges of filing, confidentiality, and manipulation have been brilliantly solved in radiology. However, digitalization of hematoxylin- and eosin-stained routine histological slides has shown slow movement. Although the application for external quality assurance is a reality for a pathologist with most of the continuing medical education programs utilizing virtual microscopy, the abandonment of traditional glass slides for routine diagnostics is far from the perspectives of many departments of laboratory medicine and pathology. Digital pathology images are captured as images by scanning and whole slide imaging/virtual microscopy can be obtained by microscopy (robotic) on an entire histological (microscopic) glass slide. Since 1986, services using telepathology for the transfer of images of anatomic pathology between detached locations have benefited countless patients globally, including the University of Alberta. The purpose of specialist recertification or re-validation for the Royal College of Pathologists of Canada belonging to the Royal College of Physicians and Surgeons of Canada and College of American Pathologists is a milestone in virtual reality. Challenges, such as high bandwidth requirement, electronic platforms, the stability of the operating systems, have been targeted and are improving enormously. The encryption of digital images may be a requirement for the accreditation of laboratory services—quantum computing results in quantum-mechanical phenomena, such as superposition and entanglement. Different from binary digital electronic computers based on transistors where data are encoded into binary digits (bits) with two different states (0 and 1), quantum computing uses quantum bits (qubits), which can be in superpositions of states. The use of quantum computing protocols on encrypted data is crucial for the permanent implementation of virtual pathology in hospitals and universities. Quantum computing may well represent the technological singularity to create new classifications and taxonomic rules in medicine

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations.

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.S.E.H. and C.A.S. partially supported genotyping through a philanthropic donation. A.F. and D.E. were supported by a grant from the German Federal Ministry of Education and COVID-19 grant Research (BMBF; ID:01KI20197); A.F., D.E. and F.D. were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). D.E. was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). D.E., K.B. and S.B. acknowledge the Novo Nordisk Foundation (NNF14CC0001 and NNF17OC0027594). T.L.L., A.T. and O.Ö. were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. M.W. and H.E. are supported by the German Research Foundation (DFG) through the Research Training Group 1743, ‘Genes, Environment and Inflammation’. L.V. received funding from: Ricerca Finalizzata Ministero della Salute (RF-2016-02364358), Italian Ministry of Health ‘CV PREVITAL’—strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ‘REVEAL’; Fondazione IRCCS Ca’ Granda ‘Ricerca corrente’, Fondazione Sviluppo Ca’ Granda ‘Liver-BIBLE’ (PR-0391), Fondazione IRCCS Ca’ Granda ‘5permille’ ‘COVID-19 Biobank’ (RC100017A). A.B. was supported by a grant from Fondazione Cariplo to Fondazione Tettamanti: ‘Bio-banking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by an MIUR grant to the Department of Medical Sciences, under the program ‘Dipartimenti di Eccellenza 2018–2022’. This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP (The Institute for Health Science Research Germans Trias i Pujol) IGTP is part of the CERCA Program/Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIII-MINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). M.M. received research funding from grant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIII-Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (European Regional Development Fund (FEDER)-Una manera de hacer Europa’). B.C. is supported by national grants PI18/01512. X.F. is supported by the VEIS project (001-P-001647) (co-funded by the European Regional Development Fund (ERDF), ‘A way to build Europe’). Additional data included in this study were obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, European Institute of Innovation & Technology (EIT), a body of the European Union, COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. A.J. and S.M. were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). A.J. was also supported by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the European Regional Development Fund (FEDER). The Basque Biobank, a hospital-related platform that also involves all Osakidetza health centres, the Basque government’s Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. M.C. received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). M.R.G., J.A.H., R.G.D. and D.M.M. are supported by the ‘Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III’ (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100) and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón’s team is supported by CIBER of Epidemiology and Public Health (CIBERESP), ‘Instituto de Salud Carlos III’. J.C.H. reports grants from Research Council of Norway grant no 312780 during the conduct of the study. E.S. reports grants from Research Council of Norway grant no. 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). P.K. Bergisch Gladbach, Germany and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF). O.A.C. is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—CECAD, EXC 2030–390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. K.U.L. is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. F.H. was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to A.R. from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme—Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to A.R. P.R. is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). F.T. is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). C.L. and J.H. are supported by the German Center for Infection Research (DZIF). T.B., M.M.B., O.W. und A.H. are supported by the Stiftung Universitätsmedizin Essen. M.A.-H. was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. E.C.S. is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1)
    • …
    corecore