431 research outputs found

    Reference Receiver Based Digital Self-Interference Cancellation in MIMO Full-Duplex Transceivers

    Full text link
    In this paper we propose and analyze a novel self-interference cancellation structure for in-band MIMO full-duplex transceivers. The proposed structure utilizes reference receiver chains to obtain reference signals for digital self-interference cancellation, which means that all the transmitter-induced nonidealities will be included in the digital cancellation signal. To the best of our knowledge, this type of a structure has not been discussed before in the context of full-duplex transceivers. First, we will analyze the overall achievable performance of the proposed cancellation scheme, while also providing some insight into the possible bottlenecks. We also provide a detailed formulation of the actual cancellation procedure, and perform an analysis into the effect of the received signal of interest on self-interference coupling channel estimation. The achieved performance of the proposed reference receiver based digital cancellation procedure is then assessed and verified with full waveform simulations. The analysis and waveform simulation results show that under practical transmitter RF/analog impairment levels, the proposed reference receiver based cancellation architecture can provide substantially better self-interference suppression than any existing solution, despite deploying only low-complexity linear digital processing.Comment: 7 pages, 4 figures. To be presented in the 2014 IEEE Broadband Wireless Access Worksho

    Nonlinear Digital Self-Interference Cancellation with Reduced Complexity for Full Duplex Systems

    Get PDF
    Full duplex transmission is currently viewed as an important technology component for the future 5G and beyond mobile broadband technology. In order to realize its promised theoretical gain, sufficient cancellation of the self-interference must be achieved. The focus throughout this work will be on the digital cancellation, which main target is to cancel the residual self-interference resulting from the insufficient analog cancellation due to hardware imperfections, along with non-linearities existing in the transmitter chain. A novel pre-transmission transformation based on the Cholesky decomposition is presented, that aims at enhancing the digital cancellation performance. A digital cancellation based on the transversal recursive least squares with the exploitation of the dichotomous coordinate descent algorithm to lower the computational complexity is presented. The analysis was extended to include the existence of a received signal of interest, while simultaneously canceling the self-interference signal. By means of numerical simulations, a performance evaluation was carried out and results showed that the level of residual interference after the digital canceler reaches the simulated noise floor power level

    Cancellation of Power Amplifier Induced Nonlinear Self-Interference in Full-Duplex Transceivers

    Full text link
    Recently, full-duplex (FD) communications with simultaneous transmission and reception on the same channel has been proposed. The FD receiver, however, suffers from inevitable self-interference (SI) from the much more powerful transmit signal. Analogue radio-frequency (RF) and baseband, as well as digital baseband, cancellation techniques have been proposed for suppressing the SI, but so far most of the studies have failed to take into account the inherent nonlinearities of the transmitter and receiver front-ends. To fill this gap, this article proposes a novel digital nonlinear interference cancellation technique to mitigate the power amplifier (PA) induced nonlinear SI in a FD transceiver. The technique is based on modeling the nonlinear SI channel, which is comprised of the nonlinear PA, the linear multipath SI channel, and the RF SI canceller, with a parallel Hammerstein nonlinearity. Stemming from the modeling, and appropriate parameter estimation, the known transmit data is then processed with the developed nonlinear parallel Hammerstein structure and suppressed from the receiver path at digital baseband. The results illustrate that with a given IIP3 figure for the PA, the proposed technique enables higher transmit power to be used compared to existing linear SI cancellation methods. Alternatively, for a given maximum transmit power level, a lower-quality PA (i.e., lower IIP3) can be used.Comment: To appear in proceedings of the 2013 Asilomar Conference on Signals, Systems & Computer

    Feasibility of In-band Full-Duplex Radio Transceivers with Imperfect RF Components: Analysis and Enhanced Cancellation Algorithms

    Full text link
    In this paper we provide an overview regarding the feasibility of in-band full-duplex transceivers under imperfect RF components. We utilize results and findings from the recent research on full-duplex communications, while introducing also transmitter-induced thermal noise into the analysis. This means that the model of the RF impairments used in this paper is the most comprehensive thus far. By assuming realistic parameter values for the different transceiver components, it is shown that IQ imaging and transmitter-induced nonlinearities are the most significant sources of distortion in in-band full-duplex transceivers, in addition to linear self-interference. Motivated by this, we propose a novel augmented nonlinear digital self-interference canceller that is able to model and hence suppress all the essential transmitter imperfections jointly. This is also verified and demonstrated by extensive waveform simulations.Comment: 7 pages, presented in the CROWNCOM 2014 conferenc
    • …
    corecore