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Abstract—Full duplex transmission is currently viewed as an
important technology component for the future 5G and beyond
mobile broadband technology. In order to realize its promised
theoretical gain, sufficient cancellation of the self-interference
must be achieved. The focus throughout this work will be on the
digital cancellation, which main target is to cancel the residual
self-interference resulting from the insufficient analog cancella-
tion due to hardware imperfections, along with non-linearities
existing in the transmitter chain. A novel pre-transmission trans-
formation based on the Cholesky decomposition is presented,
that aims at enhancing the digital cancellation performance.
A digital cancellation based on the transversal recursive least
squares with the exploitation of the dichotomous coordinate
descent algorithm to lower the computational complexity is
presented. The analysis was extended to include the existence
of a received signal of interest, while simultaneously canceling
the self-interference signal. By means of numerical simulations,
a performance evaluation was carried out and results showed
that the level of residual interference after the digital canceler
reaches the simulated noise floor power level.

I. INTRODUCTION

T
HE wireless future industry including 5G and beyond

will be prominent by an extensive wireless integration

of smartphones, wearables, sensors, tablets, drones and other

objects into a massive integrated system [1]. Realizing the

requirements for an incorporation of users within such a

diverse pool implies a paradigm shift of the spectrum uti-

lization. The current research has been directed into spectrally

efficient transmission schemes to cope with the unprecedented

volume of data [2]. Among the investigated topics are the

full-duplex transmission schemes [3]–[5]. Theoretically, full-

duplex transmission allows the full utilization of the available

resources in both transmission directions downlink and uplink,

thus, leading to doubling the achievable rates [6].

In order to realize the full-duplex gains, sufficient can-

cellation of the self-interference (SI) should be carried out.

The main bottleneck is the large power difference between SI

signal resulting from a device’s own wireless transmissions

and the received signal of interest (SoI) coming from a distant

transmitting node [5]. The SI cancellation is carried over

three main stages: passive, analog and digital cancellation.

The focus of this paper is the digital cancellation, which

aims at canceling the residual SI after the analog and passive

cancellation along with the cancellation of the nonlinearities

existing in the transmitter chain [5]. The digital cancellation

plays an important role to further cancel the SI signal down

to the noise floor level in order to provide a success reception

of the received SoI.

Different schemes for the digital canceler in full duplex

systems have been covered over the past years in the literature.

In [7], an extension of the purely digital approach towards

including an additional receiving chain has been introduced.

The main drawback of this architecture are the hardware

limitations, mainly, the low noise amplifier (LNA) saturation

of the Rx chain. Another approach was presented in [8], where

a joint and successive iterative estimation of the channel and

nonlinear coefficients was adopted. Although it provides high

cancellation performance, orthogonal training sequence and

dependency on a specific waveform were the main problems

with this solution. Another joint estimation solution was

introduced in [9] which exploits the common phase error

cancellation. The main constraint is the requirement for high-

resolution channel estimates and signal-to-noise-ratio (SNR)

values at the receiver. A more recent adaptive algorithm was

introduced in [10] which was based on the nonlinear adaptive

estimation of the SI channel and iteratively computing the

SI channel. The main limitation of the mentioned technique

is the tuning required for the adaptation algorithm and the

performance limitations imposed by the digital canceler. The

proposed algorithm throughout this contribution aims to solve

those two mentioned problems by providing high cancellation

performance with low computational complexity.

This work is organized as follows: Section II presents

the system and the signal model used. Afterwards, a pre-

estimation process based on the transformation of the power

functions along with the proposed cancellation algorithm are

explained in Section III. Furthermore, the simulation results

are presented and explained in Section IV. Finally, a summary

is provided in Section V.

II. SIGNAL MODEL

The system model investigated through this work is shown

in Fig. 1. The generated baseband transmitted signal denoted

by x[n] first gets passed through the transmitter front-end,

resulting in the analog signal at the power amplifier (PA)

output xPA(t). Afterwards, the signal propagates through a
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Fig. 1. System model of the investigated full duplex system.

circulator for transmission. In the investigated architecture, a

single antenna for transmission and reception is utilized. As

a result, a circulator is required to separate between the the

transmission and reception directions [5]. The received signal

denoted by y(t), includes the SoI along with the SI signal.

At this stage, the received signal is subjected to the radio

frequency self-interference cancellation (RFSIC) stage, where

ŷ(t) is the signal after the RFSIC. The objective of the RFSIC

is to create a replica of the analog transmitted signal and

then subtract it from the received signal. The resulted signal

ŷ(t) is then processed by the receiver’s hardware, resulting

in the digital baseband signal yBB[n], which incorporates the

residual linear, nonlinear SI and the received SoI. The digital

self-interference cancellation (DSIC) block is then utilized to

compute an estimate of the SI signal denoted by ỹBB[n], which

is subtracted from the actual SI signal resulting in the received

residual signal z̃[n] after the digital cancellation stage.

The primary focus will be on modeling the SI signal

present in the transceiver’s chain. For a highly nonlinear PA,

different models have been extensively studied throughout the

literature [11]. The Volterra series provides a general model

with memory. Its main drawback is the large complexity cost

due to the large number of coefficients to be estimated [12].

As a result, the focus has shifted to Volterra variants, specif-

ically the Hammerstein model [13]. This model incorporates

a static non-linearity followed by a linear time invariant filter.

The static nonlinearity was chosen as the power polynomial

function that originates from a power series expansion [14].

As demonstrated in Figure 1, the generated transmitted

signal goes first through the Tx chain and then propagates

through the circulator and is convolved with the SI channel.

The SI channel represents the channel experienced by the

signal after at the PA output till the input of the RFSIC. The

main components of the SI channel are the reflections due to

antenna mismatching and leakage through the circulator [15].

Following the assumption that the PA dominates the nonlin-

earities existent in the SI signal [16], and considering the SI

channel as a linear time invariant system, the signal can be

modeled using a Hammerstein model [12]. Furthermore, the

DSIC block can be built as a nonlinear system followed by

a linear system. As a result, this block represents another

Hammerstein model. Accordingly, the overall SI baseband

signal can be represented using a parallel Hammerstein model

as follows

yBB[n] =

M−1∑
m=0

P∑
p=1

hp[m]φp(x[n−m]),

φp(x[n]) = x[n]|x[n]|p−1, (1)

where M is the memory depth of the model and P − 1 is

the nonlinearity polynomial order. Additionally, hp[m] is the

p-th order channel coefficients of the effective SI channel

and φp(x[n]) denotes the nonlinear basis function of the

baseband signal x[n]. In order to provide a sufficient level of

digital cancellation, precise estimation of hp[m] is necessary.

Denoting the estimated SI channel coefficients by h̃p[m], the

received SoI by rSoI[n] and the additive white Gaussian noise

(AWGN) in the receiver’s chain by η[n], the residual SI after

digital cancellation is

z̃[n] =rSoI[n] + η[n] + yBB[n]− ỹBB[n],

=rSoI[n] + η[n]

+ yBB[n]−
M−1∑
m=0

P∑
p=1

h̃p[m]φp(x[n −m])

︸ ︷︷ ︸
Residual SI

. (2)

Throughout this work, efficient algorithms for estimating

h̃p[m] will be presented. Furthermore, the cancellation perfor-

mance and the computational complexity represent the main

key peformance indicators (KPI) in this work.

III. DIGITAL SELF-INTERFERENCE CANCELLATION

A. Basis Functions Transformation

As mentioned earlier, the basis function φp(x[n]) represent

the nonlinear modeling of the transmitted baseband signal x[n]
for a given nonlinearity order p. Since we generate P nonlinear

basis functions for every incoming sample, the basis functions

across different nonlinearity orders are highly correlated. As a

result, slow convergence and a degraded cancellation process

is achieved when finding the optimum estimation of the SI

effective channel coefficients. Consequently, an orthogonaliza-

tion of the basis functions before the coefficients estimation
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is required [17]. The covariance matrix of the basis functions

across sufficiently large number of samples can be computed

as follows

Υ = E[φφφ[n]φφφH[n]], (3)

where E[·] is the expectation operation and φφφ[n] is the instan-

taneous basis functions for the n-th sample and is defined as

φφφ[n] = [φ1[n] φ2[n] . . . φP [n]]
T. Afterwards, a transformation

of the basis function is carried out via a whitening transforma-

tion matrix T based on the Cholesky decomposition as follows

Υ = LLH,

T = L−1, (4)

where L is a lower triangular matrix with positive diagonal

entries. Assuming the knowledge of the transmitted signal

statistics, the matrix T can be computed offline and used

on the fly. Furthermore, it can be computed independent of

the transmitted signal, only following the assumption that the

baseband symbols can be well approximated by a Gaussian

distribution. This assumption is valid for the class of multi-

carrier waveforms (orthogonal frequency division multiplexing

(OFDM) based or filter bank multi-carrier (FBMC)). Thus,

x[n] can be approximated by a circular symmetric complex

Gaussian variable with unit variance and zero mean. For the

non-orthogonal basis functions, the expectation of the l-th and

the m-th components follows

E[φl[n]φm[n]] �= 0, ∀ l,m ∈ {1, 2, · · · , P}. (5)

Additionally, by employing the definition of φp[n] as in (1),

equation (eq:corrlm) can be rewritten as

E[φl[n]φm[n]] = E[x[n]|x[n]|l−1x∗[n]|x[n]|m−1],

= E[|x[n]|l+m]. (6)

Following the assumption that x[n] is Gaussian with unit vari-

ance, the covariance computation solution can be simplified for

l,m ∈ {1, 2, · · · , P} as follows

E[|x[n]|l+m] = (7){
l+m
2 !, l +m even

(12 )
l+m+1

2

√
π
∏ l+m−1

2

i=0 (2i+ 1), l +m odd
(8)

Accordingly, the orthogonalized basis functions φ̃φφ[n] are com-

puted as follows

φ̃φφ[n] = Tφφφ[n]. (9)

In order to better rewrite the signal model, (2) can be refor-

mulated such that the data vector for the previous M samples

are included as

u[n] = [φ̃φφ
T
[n] φ̃φφ

T
[n− 1] . . . φ̃φφ

T
[n−M + 1]]T, (10)

where u[n] is the input complex data vector and u[n] ∈
CMP×1. Applying the same notation to the estimated SI

channel coefficients h̃[n] can be written as

h̃[n] = [h̃1[n] h̃2[n] . . . h̃P [n] . . . h̃P [n−M + 1]]T, (11)

where h̃[n] are the SI channel coefficient to be estimated and

h̃[n] ∈ C
MP×1. Finally, by plugging (10) and (11) into (2),

the residual SI cancellation can be denoted by

z̃[n] = rSoI [n] + η[n] + yBB[n]− h̃H[n]u[n]. (12)

Throughout the next subsection, an efficient cancellation

algorithm will be presented based on the precise estimation

and tracking of the SI channel coefficients h̃[n].

B. Self-Interference Channel Estimation

The DSIC objective is to exploit the available baseband data

at the transmitter in order to regenerate the SI signal and sub-

tract it from the actual received SI samples. Throughout this

paper, a suggested Recursive least squares (RLS) algorithm

combined with complexity reduction technique is proposed to

be deployed at the digital canceler for full-duplex systems.

The RLS algorithm chosen in this work deals with solving

the auxiliary formulation of the least squares problem [18].

The summary of the proposed exponentially weighted RLS is

presented in Table I. An initialization step is first conducted

before transmission, where the residual vector r[n] is set to the

covariance vector βo[n]. The correlation matrix R[n] is set to

an equalization matrix Π , which is defined as Π = αIMP ,

where IMP is an identity matrix of dimension MP × MP
and α is chosen based on the SNR as 0 < α < 1 [19].

The parameter λ is the forgetting factor that is chosen as

0 << λ ≤ 1. The first step represents the update of the

correlation matrix for each incoming sample. Originally, the

update should consider all the incoming input data vector

u[n]. Nevertheless, following the stationarity assumption of

the input data, only the first p components of the data vector

are sufficient to reconstruct the complete correlation matrix.

Those p components are fully captured in φ̃̃φ̃φ[n]. Accordingly,

R(1:p)[n] represents the first p rows of the correlation matrix.

Thus, by exploring the transversal structure of the input data

vector, a reduction in the computational complexity can be

achieved.

Such a reformulation of the RLS problem was utilized to

provide a reduced computational complexity compared to that

of the conventional RLS algorithm in [19]. In order to realize

a reduced computational complexity, efficient solution should

be utilized to solve step 4, which constitutes the complexity

bottleneck of the algorithm. This step results in computing

the coefficients update Δh̃[n] along with the residual vector

r[n]. Furthermore, PM and PA stand for the complexity of

real multiplications and additions respectively. The conjugate

gradient and coordinate descent are examples of exact line

search algorithms [18], [20]. High convergence speed can

be achieved by the conjugate gradient method [20]. However,

its complexity is a limiting factor as it requires a complexity

of O((MP )2) per sample, which is too high for the targeted

KPI of our digital canceler for practical implementations. A

less complex solution is obtained with the coordinate descent

algorithm [18], which achieves as well high cancellation

results, but requires MP multiplications. As a result, the focus
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TABLE I
EXPONENTIALLY RECURSIVE LEAST MEAN SQUARES ALGORITHM

Step Computation real x real +

Intialization: h̃[0] = 0, z̃[0] = 0
r[0] = 0,R[0] = Π

while transmitting (n ≥ 1) - -

1 R(1:p)[n] = λR(1:p)[n− 1] + φ̃̃φ̃φ[n]uH[n] 6MP 2 4MP 2

2 z̃[n] = yBB[n]− h̃H[n− 1]u[n] 4MP 2(MP + 1)

3 βo[n] = λr[n− 1] + z̃∗[n]u[n] 6MP 4MP

4 R[n]Δh̃[n] = βo[n] ⇒ Δh̃[n],r[n] PM PA

5 h̃[n] = h̃[n− 1] +Δh̃[n] - 2MP

Total: × : 6MP
2 + 10(MP ) + PM

Total + : 4MP
2 + 8MP + 2 + PA

- -

of this work is towards the dichotomous coordinate descent

(DCD) algorithm due to its advantage of low complexity [21].

The main motivation of the DCD algorithm is to avoid

multiplications, divisions and square roots while solving the

system of linear equations. This can be achieved through

modifying the coordinate descent algorithm [18]. The detailed

steps of the DCD algorithm are presented in Algorithm 1. The

step-size μ of the solution is quantized and assigned a distinct

value out of Mb possible values, where Mb is the number of

bits used for the binary representation of Δh̃[n]. Additionally,

the range [−κ, κ], where κ is the maximum amplitude of h̃[n]
and represents the dynamic range of the targeted solution.

The algorithm considers finding iteratively the solution for

the most significant bit and then moves to a less significant

bit and so forth until all the bits are handled. Due to step-

size quantization, the solution Δh̃[n] and the residual vector

r[n] are updated based on the condition |rk| > (μ/2)[R]k,k,

where [R]k,k is the element in the k-th row and k-th column

of the correlation matrix R. If the condition is satisfied, the

iteration is labeled as a successful iteration, otherwise, as

an unsuccessful one. For successful iterations, the residual

vector and the step coefficients are updated. The notation R(k)

denotes the kth column of the correlation matrix. Additionally,

the parameter Nu defines the number of iterations that needs

to be conducted on every element of the filter weights.

It has been shown in [18] that for the worst case scenario,

the maximum number of additions PA required is upper

bounded by N(2Nu+Mb−1)+Nu. As a result, the number of

real multiplications of the proposed transversal RLS algorithm

is 6MP 2 + 10(MP ).

IV. NUMERICAL RESULTS

In this section, the simulation results for the discussed

concepts in the previous sections are presented. The main

simulation parameters are presented in Table II. Throughout

this work, behavioural modeling was considered for the dif-

ferent hardware components of the transceiver’s chain [22].

As mentioned in Section II, the choice of the PA model

Algorithm 1 Dichotomous coordinate descent

1: Initialization: Δh̃ = 0, r = βo, m = 0, k = 0, μ = κ
2: while m ≤ Mb do

3: μ ← μ/2
4: flag ← 0
5: while k ≤ MP do

6: if |rk| > (μ/2)[R]k,k then

7: Δh̃k ← Δh̃k + sign(rk)μ
8: rk ← rk − sign(rk)μR

(k)

9: q ← q + 1, flag ← 1
10: if q > Nu then Return

11: end if

12: end if

13: k ← k + 1
14: end while

15: if flag = 1 then flag ← 0, go to step 5

16: m ← m+ 1
17: end while

TABLE II
SIMULATION PARAMETERS FOR THE FULL-DUPLEX SIMULATOR

Parameter value

Noise floor −90 dBm
Received signal power −80 dBm
Bandwidth 20 MHz
Circulator isolation 20 dB
Memory depth (M ) 10
Nonlinearity order (P − 1) 4
Forgetting factor (λ) 0.9
Number of updates iterations (Nu) 1
Bits for binary representation (Mb) 8

DCD maximum weight update (κ) 2−9

affects the overall system nonlinearities. The power series

model, or the polynomial model, until the 5-th coefficient

was considered for the PA model. Additionally, the two key

performance indicators that will be investigated are the can-

cellation performance and the computational complexity. The

latter represents the practicality of the proposed algorithms

with limited hardware resources. The studied Tx signal is

based on OFDM modulation.

In Figure 2,the power spectrum density (PSD) of the resid-

ual SI power is showed at three main stages: PA output, after

RFSIC and after DSIC. The signal power was normalized to

the transmitter signal power in order to ease the visualization

of the cancellation performance. The SI is first attenuated in

the analog domain using the circulator and the analog canceler.

A combined cancellation value of ≈ 50 dB is achieved in

the analog domain. It can be observed in the PSD plot the

effect of the selectivity of the SI channel. Throughout this

work, the RFSIC was modeled using an finite impulse response

(FIR) filter to provide the required linear SI cancellation.

Further cancellation of the residual linear and the nonlinear

components is carried out by the digital canceler.

WSA 2017 · March 15-17, 2017, Berlin, Germany

ISBN  978-3-8007-4394-0 © 2017 VDE VERLAG GMBH  Berlin  Offenbach132



−10 −5 0 5 10
−100

−80

−60

−40

−20

0

Bandwidth (MHz)

P
S

D
[d

B
i]

PA output After RFSIC

After DSIC (LMS) After DSIC (RLS)

After DSIC (w/o Cholesky) Received SoI

Noise floor

Fig. 2. Cancellation Performance in the presence of received signal of interest.

The first algorithm is based on the least mean squares

(LMS) algorithm, which represents the state-of-the-art digital

cancellation as presented in [10]. The performance realized

by this algorithm is significantly limited due to the presence

of the SoI, which is impossible to detect due to the excess

residual SI. The proposed RLS algorithm offers a significant

additional cancellation performance. It can be observed that it

achieves the noise floor level with a mean percentage error of

≈ 10%. The curve denoted by the RLS, represents the residual

SI after subtracting the received SoI from it. The observed

cancellation gain between the two algorithms stems from the

LMS sub-optimality in the sense that it aims to minimize the

mean square error. On the other hand, the RLS goal is to search

recursively for the filter weights that minimize the least squares

function while exploiting the computed correlation matrix for

every sample, which the LMS algorithm ignores.

Finally, the effect of the basis functions transformation is

studied, also the case without transformation (w/o Cholesky)

was included to show the degradation resulted when not

carried out. The observed fluctuations in the PSD behavior

occurs due to the large power difference between the p
nonlinear components. Thus, leading to a drastic degradation

in the cancellation performance.

An additional important KPI is the computational complex-

ity provided by the investigated algorithms. Figure 3, presents

the main investigated algorithms along with their cancellation

performance, and shows the significant computational burden

saved via exploiting the DCD algorithm. RLS-matrix inversion

lemma (MIL) represents the conventional RLS based on the
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Fig. 3. (a) Cumulative distribution function of residual signal after digital
cancellation for different digital cancellation algorithms . (b) Computational
complexity comparison as a function of number of filter taps

MIL [19]. It can be observed the gain achieved by the

RLS algorithm with the added complexity as a trade off.

Additionally, the computational saving provided by the DCD

with nearly same cancellation performance, favors it as an

alternative to the conventional RLS algorithm. Further savings

in the DCD computational complexity can be achieved by

WSA 2017 · March 15-17, 2017, Berlin, Germany

ISBN  978-3-8007-4394-0 © 2017 VDE VERLAG GMBH  Berlin  Offenbach133



exploring the stationarity characteristic of the input data as

explained in the previous section.

The green curves show the complexity cost for an increasing

set of P of the proposed transversal RLS algorithm. For

the dashed green curves, the complexity is now a function

of M and P , which are decoupled. For the ease of the

visualization, P is fixed for each curve and only M is

varied accordingly. Multiple values of P are plotted to show

the complexity reduction realized by the transversal RLS

algorithm. Furthermore, the performance loss is negligible

compared to the savings in the computational complexity. As

a result, one can conclude that the computational complexity

can be significantly reduced via the DCD algorithm combined

with the transversal characteristic of the input data vector.

V. CONCLUSION

Throughout this work, a low-complexity digital cancellation

solution based on a transversal RLS-DCD algorithm was pro-

posed. An enhancement of the cancellation performance was

realized, compared to the state-of-the-art solutions. Addition-

ally, a pre-transmission step based on the orthogonalization of

the basis functions via Cholesky decomposition was presented,

to ensure a higher realized cancellation performance.

The simulation results validated the gain achieved by the

proposed algorithm, especially with the existence of a received

SoI. The reception is carried out simultaneously while estimat-

ing the residual SI signal. A complexity analysis of different

cancellation algorithms was presented to show the complexity

reduction realized by the proposed algorithm. The cancellation

gain realized by the proposed algorithm along with the low

computational complexity represents a promising candidate for

the design of the digital canceler in full duplex systems.
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