1,396 research outputs found

    Dual polarization nonlinear Fourier transform-based optical communication system

    Get PDF
    New services and applications are causing an exponential increase in internet traffic. In a few years, current fiber optic communication system infrastructure will not be able to meet this demand because fiber nonlinearity dramatically limits the information transmission rate. Eigenvalue communication could potentially overcome these limitations. It relies on a mathematical technique called "nonlinear Fourier transform (NFT)" to exploit the "hidden" linearity of the nonlinear Schr\"odinger equation as the master model for signal propagation in an optical fiber. We present here the theoretical tools describing the NFT for the Manakov system and report on experimental transmission results for dual polarization in fiber optic eigenvalue communications. A transmission of up to 373.5 km with bit error rate less than the hard-decision forward error correction threshold has been achieved. Our results demonstrate that dual-polarization NFT can work in practice and enable an increased spectral efficiency in NFT-based communication systems, which are currently based on single polarization channels

    Experimental Demonstration of Nonlinear Frequency Division Multiplexed Transmission

    Full text link
    We experimentally demonstrate an NFDM optical system with modulation over nonlinear discrete spectrum. Particularly, each symbol carries 4-bits from multiplexing two eigenvalues modulated by QPSK constellation. We show a low error performance using NFT detection with 4Gbps rate over 640km.Comment: Will be presented in ECOC 2015, Sept. 201

    Performance limits in optical communications due to fiber nonlinearity

    Get PDF
    In this paper, we review the historical evolution of predictions of the performance of optical communication systems. We will describe how such predictions were made from the outset of research in laser based optical communications and how they have evolved to their present form, accurately predicting the performance of coherently detected communication systems

    Limits of Optical Fibre Communication Systems

    Get PDF
    In this presentation, we will review the historical evolution of performance predictions for optical communication systems, including single channel systems, soliton systems and high spectral density coherent systems. We will describe how such predictions have been made from the outset of optical communications research and their present form, accurately predicting the performance of coherently detected communication systems and establishing the fundamental limits of nonlinearity compensation
    • …
    corecore