60 research outputs found

    Digital Signal Processing Techniques Applied to Radio over Fiber Systems

    Get PDF
    The dissertation aims to analyze different Radio over Fiber systems for the front-haul applications. Particularly, analog radio over fiber (A-RoF) are simplest and suffer from nonlinearities, therefore, mitigating such nonlinearities through digital predistortion are studied. In particular for the long haul A-RoF links, direct digital predistortion technique (DPDT) is proposed which can be applied to reduce the impairments of A-RoF systems due to the combined effects of frequency chirp of the laser source and chromatic dispersion of the optical channel. Then, indirect learning architecture (ILA) based structures namely memory polynomial (MP), generalized memory polynomial (GMP) and decomposed vector rotation (DVR) models are employed to perform adaptive digital predistortion with low complexities. Distributed feedback (DFB) laser and vertical capacity surface emitting lasers (VCSELs) in combination with single mode/multi-mode fibers have been linearized with different quadrature amplitude modulation (QAM) formats for single and multichannel cases. Finally, a feedback adaptive DPD compensation is proposed. Then, there is still a possibility to exploit the other realizations of RoF namely digital radio over fiber (D-RoF) system where signal is digitized and transmits the digitized bit streams via digital optical communication links. The proposed solution is robust and immune to nonlinearities up-to 70 km of link length. Lastly, in light of disadvantages coming from A-RoF and D-RoF, it is still possible to take only the advantages from both methods and implement a more recent form knows as Sigma Delta Radio over Fiber (S-DRoF) system. Second Order Sigma Delta Modulator and Multi-stAge-noise-SHaping (MASH) based Sigma Delta Modulator are proposed. The workbench has been evaluated for 20 MHz LTE signal with 256 QAM modulation. Finally, The 6x2 GSa/s sigma delta modulators are realized on FPGA to show a real time demonstration of S-DRoF system. The demonstration shows that S-DRoF is a competitive competitor for 5G sub-6GHz band applications

    Digital predistortion of RF amplifiers using baseband injection for mobile broadband communications

    Get PDF
    Radio frequency (RF) power amplifiers (PAs) represent the most challenging design parts of wireless transmitters. In order to be more energy efficient, PAs should operate in nonlinear region where they produce distortion that significantly degrades the quality of signal at transmitter’s output. With the aim of reducing this distortion and improve signal quality, digital predistortion (DPD) techniques are widely used. This work focuses on improving the performances of DPDs in modern, next-generation wireless transmitters. A new adaptive DPD based on an iterative injection approach is developed and experimentally verified using a 4G signal. The signal performances at transmitter output are notably improved, while the proposed DPD does not require large digital signal processing memory resources and computational complexity. Moreover, the injection-based DPD theory is extended to be applicable in concurrent dual-band wireless transmitters. A cross-modulation problem specific to concurrent dual-band transmitters is investigated in detail and novel DPD based on simultaneous injection of intermodulation and cross-modulation distortion products is proposed. In order to mitigate distortion compensation limit phenomena and memory effects in highly nonlinear RF PAs, this DPD is further extended and complete generalised DPD system for concurrent dual-band transmitters is developed. It is clearly proved in experiments that the proposed predistorter remarkably improves the in-band and out-of-band performances of both signals. Furthermore, it does not depend on frequency separation between frequency bands and has significantly lower complexity in comparison with previously reported concurrent dual-band DPDs

    Energy-Efficient Distributed Estimation by Utilizing a Nonlinear Amplifier

    Get PDF
    abstract: Distributed estimation uses many inexpensive sensors to compose an accurate estimate of a given parameter. It is frequently implemented using wireless sensor networks. There have been several studies on optimizing power allocation in wireless sensor networks used for distributed estimation, the vast majority of which assume linear radio-frequency amplifiers. Linear amplifiers are inherently inefficient, so in this dissertation nonlinear amplifiers are examined to gain efficiency while operating distributed sensor networks. This research presents a method to boost efficiency by operating the amplifiers in the nonlinear region of operation. Operating amplifiers nonlinearly presents new challenges. First, nonlinear amplifier characteristics change across manufacturing process variation, temperature, operating voltage, and aging. Secondly, the equations conventionally used for estimators and performance expectations in linear amplify-and-forward systems fail. To compensate for the first challenge, predistortion is utilized not to linearize amplifiers but rather to force them to fit a common nonlinear limiting amplifier model close to the inherent amplifier performance. This minimizes the power impact and the training requirements for predistortion. Second, new estimators are required that account for transmitter nonlinearity. This research derives analytically and confirms via simulation new estimators and performance expectation equations for use in nonlinear distributed estimation. An additional complication when operating nonlinear amplifiers in a wireless environment is the influence of varied and potentially unknown channel gains. The impact of these varied gains and both measurement and channel noise sources on estimation performance are analyzed in this paper. Techniques for minimizing the estimate variance are developed. It is shown that optimizing transmitter power allocation to minimize estimate variance for the most-compressed parameter measurement is equivalent to the problem for linear sensors. Finally, a method for operating distributed estimation in a multipath environment is presented that is capable of developing robust estimates for a wide range of Rician K-factors. This dissertation demonstrates that implementing distributed estimation using nonlinear sensors can boost system efficiency and is compatible with existing techniques from the literature for boosting efficiency at the system level via sensor power allocation. Nonlinear transmitters work best when channel gains are known and channel noise and receiver noise levels are low.Dissertation/ThesisPh.D. Electrical Engineering 201

    Compact Digital Predistortion for Multi-band and Wide-band RF Transmitters

    Get PDF
    This thesis is focusing on developing a compact digital predistortion (DPD) system which costs less DPD added power consumptions. It explores a new theory and techniques to relieve the requirement of the number of training samples and the sampling-rate of feedback ADCs in DPD systems. A new theory about the information carried by training samples is introduced. It connects the generalized error of the DPD estimation algorithm with the statistical properties of modulated signals. Secondly, based on the proposed theory, this work introduces a compressed sample selection method to reduce the number of training samples by only selecting the minimal samples which satisfy the foreknown probability information. The number of training samples and complex multiplication operations required for coefficients estimation can be reduced by more than ten times without additional calculation resource. Thirdly, based on the proposed theory, this thesis proves that theoretically a DPD system using memory polynomial based behavioural modes and least-square (LS) based algorithms can be performed with any sampling-rate of feedback samples. The principle, implementation and practical concerns of the undersampling DPD which uses lower sampling-rate ADC are then introduced. Finally, the observation bandwidth of DPD systems can be extended by the proposed multi-rate track-and-hold circuits with the associated algorithm. By addressing several parameters of ADC and corresponding DPD algorithm, multi-GHz observation bandwidth using only a 61.44MHz ADC is achieved, and demonstrated the satisfactory linearization performance of multi-band and continued wideband RF transmitter applications via extensive experimental tests

    Linearizing Radio Frequency Power Amplifiers Using an Analog Predistortion Technique

    Get PDF
    As critical elements of the physical infrastructure that enables ubiquitous wireless connectivity, radio frequency power amplifiers (RFPAs) are constantly pushed to the limits of linear but efficient operation. Digital predistortion, as a means of circumventing the limitations of this inherent linearity – efficiency trade-off, has been a subject of prolific research for well over a decade. However, to support the unrestrained growth of broadband mobile traffic, wireless networks are expected to rely increasingly on heterogeneously-sized small cells which necessitate new predistortion solutions operating at a fraction of the power consumed by digital predistortion approaches. This thesis pertains to an emerging area of research involving analog predistortion (APD) – a promising, low-power alternative to digital predistortion (DPD) for future wireless networks. Specifically, it proposes a mathematical function that can be used by the predistorter to linearize RFPAs. As a preliminary step, the challenges of transitioning from DPD to APD are identified and used to formulate the constraints that APD imposes on the predistorter function. Following an assessment of the mathematical functions commonly used for DPD, and an analysis of the physical mechanisms of RFPA distortion, a new candidate function is proposed. This function is both compatible with and feasible for an APD implementation, and offers competitive performance against more complex predistorter functions (that can only be implemented in DPD). The proposed predistorter function and its associated coefficient identification procedure are experimentally validated by using them to linearize an RFPA stimulated with single-band carrier aggregated signals of progressively wider bandwidths. The solution is then extended to the case of dual-band transmission, and subsequently validated on an RFPA as well. The proposed function is a cascade of a finite impulse response filter and an envelope memory polynomial and has the potential to deliver far better linearization results than what has been demonstrated to date in the APD literature

    Development of digital predistorters for broadband power amplifiers in OFDM systems using the simplicial canonical piecewise linear function

    Get PDF
    Power amplifiers (PAs) are inherently nonlinear devices. Linearity of a PA can be achieved by backing off the PA to its linear region at the expense of power efficiency loss. For signals with high envelope fluctuation such OFDM system, large backoff is required, causing significant loss in power efficiency. Thus, backoff is not a favourable solution. Digital predistorters (PDs) are widely employed for linearizing PAs that are driven to the nonlinear regions. In broadband systems where PAs exhibit memory effects, the PDs are also required to compensate the memory effects. This thesis deals with the development of digital PDs for broadband PAs in OFDM systems using the Simplicial Canonical Piecewise Linear (SCPWL) function. The SCPWL function offers a few advantages over polynomial models. It imposes a saturation after the last breakpoint, making it suitable for modelling nonlinearities of PA and PD. The breakpoints of the function can be freely placed to allow optimum fitting of a given nonlinearity. It is suitable for modeling strong nonlinearities. Analysis of the SCPWL spectra property shows that the function models infinite order of intermodulation distortion, even with small number of breakpoints. The accuracy of the model can be improved by increasing the number of breakpoints. The original real-valued SCPWL function is extended to include memory structure and complex-valued coefficients, resulting in the proposed baseband SCPWL model with memory. The model is adopted in the development of the Hammerstein-SCPWL PD and memory-SCPWL PD. Vector projection methods are developed for static SCPWL PDs identification. Adaptive algorithms employing the indirect and direct learning architectures are developed for identifying the Hammerstein-SCPWL PD and memory-SCPWL PD. By exploiting the properties of the SCPWL function, the algorithms are simplified. A modified Wiener model estimator is employed to circumvent the non-convex cost function problem of block models. This further reduces the complexity of the Hammerstein PD algorithms. The thesis also analyses the effects of measurement noise on indirect learning SCPWL filter. Due to its linear basis function, the SCPWL filter coefficients do not suffer the coefficient bias effects which are observed in polynomial models. The performance of the proposed SCPWL PDs are compared with state-of-the-art polynomial-based PDs by simulations and measurements

    Digital modems for mobile systems

    Get PDF
    Digital modems for mobile system
    • …
    corecore