118 research outputs found

    Review on passive approaches for detecting image tampering

    Get PDF
    This paper defines the presently used methods and approaches in the domain of digital image forgery detection. A survey of a recent study is explored including an examination of the current techniques and passive approaches in detecting image tampering. This area of research is relatively new and only a few sources exist that directly relate to the detection of image forgeries. Passive, or blind, approaches for detecting image tampering are regarded as a new direction of research. In recent years, there has been significant work performed in this highly active area of research. Passive approaches do not depend on hidden data to detect image forgeries, but only utilize the statistics and/or content of the image in question to verify its genuineness. The specific types of forgery detection techniques are discussed below

    An Overview on Image Forensics

    Get PDF
    The aim of this survey is to provide a comprehensive overview of the state of the art in the area of image forensics. These techniques have been designed to identify the source of a digital image or to determine whether the content is authentic or modified, without the knowledge of any prior information about the image under analysis (and thus are defined as passive). All these tools work by detecting the presence, the absence, or the incongruence of some traces intrinsically tied to the digital image by the acquisition device and by any other operation after its creation. The paper has been organized by classifying the tools according to the position in the history of the digital image in which the relative footprint is left: acquisition-based methods, coding-based methods, and editing-based schemes

    Lighting and Optical Tools for Image Forensics

    Get PDF
    We present new forensic tools that are capable of detecting traces of tampering in digital images without the use of watermarks or specialized hardware. These tools operate under the assumption that images contain natural properties from a variety of sources, including the world, the lens, and the sensor. These properties may be disturbed by digital tampering and by measuring them we can expose the forgery. In this context, we present the following forensic tools: (1) illuminant direction, (2) specularity, (3) lighting environment, and (4) chromatic aberration. The common theme of these tools is that they exploit lighting or optical properties of images. Although each tool is not applicable to every image, they add to a growing set of image forensic tools that together will complicate the process of making a convincing forgery

    Digital forensic techniques for the reverse engineering of image acquisition chains

    Get PDF
    In recent years a number of new methods have been developed to detect image forgery. Most forensic techniques use footprints left on images to predict the history of the images. The images, however, sometimes could have gone through a series of processing and modification through their lifetime. It is therefore difficult to detect image tampering as the footprints could be distorted or removed over a complex chain of operations. In this research we propose digital forensic techniques that allow us to reverse engineer and determine history of images that have gone through chains of image acquisition and reproduction. This thesis presents two different approaches to address the problem. In the first part we propose a novel theoretical framework for the reverse engineering of signal acquisition chains. Based on a simplified chain model, we describe how signals have gone in the chains at different stages using the theory of sampling signals with finite rate of innovation. Under particular conditions, our technique allows to detect whether a given signal has been reacquired through the chain. It also makes possible to predict corresponding important parameters of the chain using acquisition-reconstruction artefacts left on the signal. The second part of the thesis presents our new algorithm for image recapture detection based on edge blurriness. Two overcomplete dictionaries are trained using the K-SVD approach to learn distinctive blurring patterns from sets of single captured and recaptured images. An SVM classifier is then built using dictionary approximation errors and the mean edge spread width from the training images. The algorithm, which requires no user intervention, was tested on a database that included more than 2500 high quality recaptured images. Our results show that our method achieves a performance rate that exceeds 99% for recaptured images and 94% for single captured images.Open Acces

    Review of Digital Image Forgery Detection

    Get PDF
    Forgery in digital images can be done by manipulating the digital image to conceal some meaningful or useful information of the image. It can be much difficult to identify the edited region from the original image in various cases. In order to maintain the integrity and authenticity of the image, the detection of forgery in the image is necessary. Adaption of modern lifestyle and advanced photography equipment has made tempering of digital image easy with the help of image editing soft wares. It is thus important to detect such image tempering operations. Different methods exist in literature that divide the suspicious image into overlapped blocks and extract some features from the images to detect the type of forgery that exist in the image. The image forgery detection can be done based on object removal, object addition, unusual color modifications in the image. Many existing techniques are available to overcome this problem but most of these techniques have many limitations. Images are one of the powerful media for communication. In this paper a survey of different types of forgery and digital image forgery detection has been focused
    corecore