1,014 research outputs found

    Impact of the hardened floating-point cores on HIL technology

    Full text link
    The Hardware-In-the-Loop (HIL) technique is increasingly used for testing power electronics. FPGAs (Field-Programmable Gate Array) are becoming usual in this kind of emulation due to their acceleration capabilities. But even using FPGAs, it has not been possible to reach real time simulations when small integration steps are necessary (around 100 ns or lower) if floating-point representation is used. Fixed-point has been the solution, but at a high design effort cost. With the release of FPGAs with HFP (Hardened Floating-Point) cores – dedicated floating-point blocks implemented in silicon – the minimum achievable simulation step decreases significantly. This paper presents a comparison between HFP cores, floating-point in programmable logic and fixed-point for HIL models. Results show that both HFP-based and fixed-point arithmetic achieve a simulation step around 10 ns for a full-bridge converter model. A comparison regarding resolution and accuracy is also presented, because acceleration is not the only issue when decreasing the integration step. Numerical resolution also plays an important role, and 32-bit floating-point representation finds a double barrier: acceleration marked by technology, and numerical resolution. Both are explored in this paperThis work has been supported by the Spanish Ministerio deEconomía y Competitividad under project TEC2013-43017-

    Design and Control of Power Converters for High Power-Quality Interface with Utility and Aviation Grids

    Get PDF
    Power electronics as a subject integrating power devices, electric and electronic circuits, control, and thermal and mechanic design, requires not only knowledge and engineering insight for each subarea, but also understanding of interface issues when incorporating these different areas into high performance converter design.Addressing these fundamental questions, the dissertation studies design and control issues in three types of power converters applied in low-frequency high-power transmission, medium-frequency converter emulated grid, and high-frequency high-density aviation grid, respectively, with the focus on discovering, understanding, and mitigating interface issues to improve power quality and converter performance, and to reduce the noise emission.For hybrid ac/dc power transmission,• Analyze the interface transformer saturation issue between ac and dc power flow under line unbalances.• Proposed both passive transformer design and active hybrid-line-impedance-conditioner to suppress this issue.For transmission line emulator,• Propose general transmission line emulation schemes with extension capability.• Analyze and actively suppress the effects of sensing/sampling bias and PWM ripple on emulation considering interfaced grid impedance.• Analyze the stability issue caused by interaction of the emulator and its interfaced impedance. A criterion that determines the stability and impedance boundary of the emulator is proposed.For aircraft battery charger,• Investigate architectures for dual-input and dual-output battery charger, and a three-level integrated topology using GaN devices is proposed to achieve high density.• Identify and analyze the mechanisms and impacts of high switching frequency, di/dt, dv/dt on sensing and power quality control; mitigate solutions are proposed.• Model and compensate the distortion due to charging transition of device junction capacitances in three-level converters.• Find the previously overlooked device junction capacitance of the nonactive devices in three-level converters, and analyze the impacts on switching loss, device stress, and current distortion. A loss calculation method is proposed using the data from the conventional double pulse tester.• Establish fundamental knowledge on performance degradation of EMI filters. The impacts and mechanisms of both inductive and capacitive coupling on different filter structures are understood. Characterization methodology including measuring, modeling, and prediction of filter insertion loss is proposed. Mitigation solutions are proposed to reduce inter-component coupling and self-parasitics

    Parametrizable fixed-point arithmetic for HIL with small simulation steps

    Full text link
    Hardware-in-the-loop (HIL) techniques are increasingly used for test purposes because of their advantages over classical simulations. Field-programmable gate arrays (FPGAs) are becoming popular in HIL systems because of their parallel computing capabilities. In most cases, FPGAs are mainly used for signal processing, such as input pulsewidth modulation sampling and conditioning, while there are also processors to model the system. However, there are other HIL systems that implement the model in the FPGA. For FPGA implementation and regarding the arithmetics, there are two main possibilities: fixed-point and floating-point. Fixed-point is the best choice only when real-time simulations with small simulation steps are needed, while floating point is the common choice because of its flexibility and ease of use. This paper presents a novel hybrid arithmetic for FPGAs called parametrizable fixed-point which takes advantage of both arithmetics as the internal operations are accomplished using simple signed integers, while the point location of the variables can be adjusted as necessary without redesigning the model of the plant. The experimental results show that a buck converter can be modeled using this novel arithmetic with a simulation step below 20 ns. Besides, the experiments prove that the proposed model can be adjusted to any set of values (voltages, currents, capacitances, and so on.) keeping its accuracy without resynthesizing, showing the big advantage over the fixed-point arithmeticThis work has been supported by the Spanish Ministerio de EconomĂ­a y Competitividad under project TEC2013-43017-

    Co-design of Security Aware Power System Distribution Architecture as Cyber Physical System

    Get PDF
    The modern smart grid would involve deep integration between measurement nodes, communication systems, artificial intelligence, power electronics and distributed resources. On one hand, this type of integration can dramatically improve the grid performance and efficiency, but on the other, it can also introduce new types of vulnerabilities to the grid. To obtain the best performance, while minimizing the risk of vulnerabilities, the physical power system must be designed as a security aware system. In this dissertation, an interoperability and communication framework for microgrid control and Cyber Physical system enhancements is designed and implemented taking into account cyber and physical security aspects. The proposed data-centric interoperability layer provides a common data bus and a resilient control network for seamless integration of distributed energy resources. In addition, a synchronized measurement network and advanced metering infrastructure were developed to provide real-time monitoring for active distribution networks. A hybrid hardware/software testbed environment was developed to represent the smart grid as a cyber-physical system through hardware and software in the loop simulation methods. In addition it provides a flexible interface for remote integration and experimentation of attack scenarios. The work in this dissertation utilizes communication technologies to enhance the performance of the DC microgrids and distribution networks by extending the application of the GPS synchronization to the DC Networks. GPS synchronization allows the operation of distributed DC-DC converters as an interleaved converters system. Along with the GPS synchronization, carrier extraction synchronization technique was developed to improve the system’s security and reliability in the case of GPS signal spoofing or jamming. To improve the integration of the microgrid with the utility system, new synchronization and islanding detection algorithms were developed. The developed algorithms overcome the problem of SCADA and PMU based islanding detection methods such as communication failure and frequency stability. In addition, a real-time energy management system with online optimization was developed to manage the energy resources within the microgrid. The security and privacy were also addressed in both the cyber and physical levels. For the physical design, two techniques were developed to address the physical privacy issues by changing the current and electromagnetic signature. For the cyber level, a security mechanism for IEC 61850 GOOSE messages was developed to address the security shortcomings in the standard

    Development of a Converter-Based Testing Platform and Battery Energy Storage System (BESS) Emulator for Microgrid Controller Function Evaluation

    Get PDF
    The microgrid has attracted increasing research attention in the last two decades. Due to the development of renewable energy resources and power electronics technologies, the future microgrid will trend to be smarter and more complicated. The microgrid controller performs a critical role in the microgrid operation, which will also become more and more sophisticated to support the future microgrid. Before final field deployment and test, the evaluation and testing of the controller is an indispensable step in the controller development, which requires a proper testing platform. However, existing simulation-based platforms have issues with potential numerical oscillation and may require huge computation resources for complex microgrid controllers. Meanwhile, field test-based controller evaluation is limited to the test conditions. Existing digital simulation-based platforms and field test-based platforms have limitations for microgrid controller testing. To provide a practical and flexible controller evaluation, a converter-based microgrid hardware testbed is designed and implemented considering the actual microgrid architecture and topology information. Compared with the digital simulation-based platforms, the developed microgrid testing platform can provide a more practical testing environment. Compared to the direct field test, the developed platform is more flexible to emulate different microgrids. As one of the key components, a converter-based battery energy storage system (BESS) emulator is proposed to complete the developed testing platform based on the testing requirements of microgrid controller functions. Meanwhile, the microgrid controller testing under different microgrid conditions is also considered. Two controllers for the microgrid with dynamic boundaries are tested to demonstrate the capability of the developed platform as well as the BESS emulator. Different testing cases are designed and tested to evaluate the controller performance under different microgrid conditions

    Analysis of resolution in feedback signals for hardware-in-the-loop models of power converters

    Full text link
    One of the main techniques for debugging power converters is hardware-in-the-loop (HIL), which is used for real-time emulation. Field programmable gate arrays (FPGA) are the most common design platforms due to their acceleration capability. In this case, the widths of the signals have to be carefully chosen to optimize the area and speed. For this purpose, fixed-point arithmetic is one of the best options because although the design time is high, it allows the personalization of the number of bits in every signal. The representation of state variables in power converters has been previously studied, however other signals, such as feedback signals, can also have a big influence because they transmit the value of one state variable to the rest, and vice versa. This paper presents an analysis of the number of bits in the feedback signals of a boost converter, but the conclusions can be extended to other power converters. The purpose of this work is to study how many bits are necessary in order to avoid the loss of information, but also without wasting bits. Errors of the state variables are obtained with di erent sizes of feedback signals. These show that the errors in each state variable have similar patterns. When the number of bits increases, the error decreases down to a certain number of bits, where an almost constant error appears. However, when the bits decrease, the error increases linearly. Furthermore, the results show that there is a direct relation between the number of bits in feedback signals and the inputs of the converter in the global error. Finally, a design criterion is given to choose the optimum width for each feedback signal, without wasting bit

    Real-Time FPGA-RTDS Co-Simulator for Power Systems

    Get PDF

    Introductory Chapter: ASIC Technologies and Design Techniques

    Get PDF

    Stability and Control of Grid-Friendly PV Systems

    Get PDF
    • …
    corecore