2,807 research outputs found

    The Essential Role and the Continuous Evolution of Modulation Techniques for Voltage-Source Inverters in the Past, Present, and Future Power Electronics

    Get PDF
    The cost reduction of power-electronic devices, the increase in their reliability, efficiency, and power capability, and lower development times, together with more demanding application requirements, has driven the development of several new inverter topologies recently introduced in the industry, particularly medium-voltage converters. New more complex inverter topologies and new application fields come along with additional control challenges, such as voltage imbalances, power-quality issues, higher efficiency needs, and fault-tolerant operation, which necessarily requires the parallel development of modulation schemes. Therefore, recently, there have been significant advances in the field of modulation of dc/ac converters, which conceptually has been dominated during the last several decades almost exclusively by classic pulse-width modulation (PWM) methods. This paper aims to concentrate and discuss the latest developments on this exciting technology, to provide insight on where the state-of-the-art stands today, and analyze the trends and challenges driving its future

    Multilevel Converters: An Enabling Technology for High-Power Applications

    Get PDF
    | Multilevel converters are considered today as the state-of-the-art power-conversion systems for high-power and power-quality demanding applications. This paper presents a tutorial on this technology, covering the operating principle and the different power circuit topologies, modulation methods, technical issues and industry applications. Special attention is given to established technology already found in industry with more in-depth and self-contained information, while recent advances and state-of-the-art contributions are addressed with useful references. This paper serves as an introduction to the subject for the not-familiarized reader, as well as an update or reference for academics and practicing engineers working in the field of industrial and power electronics.Ministerio de Ciencia y Tecnología DPI2001-3089Ministerio de Eduación y Ciencia d TEC2006-0386

    Power Quality Enhancement in Hybrid Photovoltaic-Battery System based on three–Level Inverter associated with DC bus Voltage Control

    Get PDF
    This modest paper presents a study on the energy quality produced by a hybrid system consisting of a Photovoltaic (PV) power source connected to a battery. A three-level inverter was used in the system studied for the purpose of improving the quality of energy injected into the grid and decreasing the Total Harmonic Distortion (THD). A Maximum Power Point Tracking (MPPT) algorithm based on a Fuzzy Logic Controller (FLC) is used for the purpose of ensuring optimal production of photovoltaic energy. In addition, another FLC controller is used to ensure DC bus stabilization. The considered system was implemented in the Matlab /SimPowerSystems environment. The results show the effectiveness of the proposed inverter at three levels in improving the quality of energy injected from the system into the grid.Peer reviewedFinal Published versio

    A Novel Reduced Components Model Predictive Controlled Multilevel Inverter for Grid-Tied Applications

    Get PDF
    This paper presents an improved single-phase Multilevel Inverter (MLI) which is conceptualized to reduce power switches along with separate DC voltage sources. Compared with recent modular topologies, the proposed MLI employs a reduced number of components. The proposed inverter consists of a combination of two circuits, i.e., the level generation and polarity generation parts. The level generation part is used to synthesize different output voltage levels, while the polarity inversion is performed by a~conventional H-bridge circuit. The performance of the proposed topology has been studied using s single-phase seven-level inverter, which utilizes seven power switches and three independent DC voltage sources. Model Predictive Control (MPC) is applied to inject a sinusoidal current into the utility grid which exhibits low Total Harmonic Distortion (THD). Tests, including a~change in grid current amplitude as well as operation under variation in Power Factor (PF), have been performed to validate the good performance obtained using MPC. The effectiveness of the proposed seven-level inverter has been verified theoretically using MATLAB Simulink. In addition, Real-Time (RT) validation using the dSPACE-CP1103 has been performed to confirm the system performance and system operation using digital platforms. Simulation and RT results show improved THD at 1.23% of injected current

    Solar Photovoltaic and Thermal Energy Systems: Current Technology and Future Trends

    Get PDF
    Solar systems have become very competitive solutions for residential, commercial, and industrial applications for both standalone and grid connected operations. This paper presents an overview of the current status and future perspectives of solar energy (mainly photovoltaic) technology and the required conversion systems. The focus in the paper is put on the current technology, installations challenges, and future expectations. Various aspects related to the global solar market, the photovoltaic (PV) modules cost and technology, and the power electronics converter systems are addressed. Research trends and recommendations for each of the PV system sectors are also discussed.Junta de Andalucía P11-TIC-7070Ministerio de Ciencia e Innovación TEC2016-78430-

    FPGA implementation of online finite-set model based predictive control for power electronics

    Get PDF
    Recently there has been an increase in the use of model based predictive control (MBPC) for power-electronic converters. MBPC allows fast and accurate control of multiple controlled variables for hybrid systems such as a power electronic converter and its load. The computational burden for this control scheme however is very high and often restrictive for a good implementation. This means that a suitable technology and design approach should be used. In this paper the implementation of finite-set MBPC (FS-MBPC) in field-programmable gate arrays (FPGAs) is discussed. The control is fully implemented in programmable digital logic by using a high-level design tool. This allows to obtain very good performances (both in control quality, speed and hardware utilization) and have a flexible, modular control configuration. The feasibility and performance of the FPGA implementation of FS-MBPC is discussed in this paper for a 4-level flying-capacitor converter (FCC). This is an interesting application as FS-MBPC allows the simultaneous control of the output current and the capacitor voltages, yet the high number of possible switch states results in a high computational load. The good performance is obtained by exploiting the FPGA’s strong points: parallelism and pipe-lining. In the application discussed in this paper the parallel processing for the three converter phases and a fully pipelined calculation of the prediction stage allow to realize an area-time efficient implementation

    Digital Control of Power Converters and Drives for Hybrid Traction and Wireless Charging

    Get PDF
    In the last years environmental issues and constant increase of fuel and energy cost have been incentivizing the development of low emission and high efficiency systems, either in traction field or in distributed generation systems from renewable energy sources. In the automotive industry, alternative solutions to the standard internal combustion engine (ICE) adopted in the conventional vehicles have been developed, i.e. fuel cell electric vehicles (FCEVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEV) or pure electric vehicles (EVs), also referred as battery powered electric vehicles (BEV). Both academic and industry researchers all over the world are still facing several technical development areas concerning HEV components, system topologies, power converters and control strategies. Efficiency, lifetime, stability and volume issues have moved the attention on a number of bidirectional conversion solutions, both for the energy transfer to/from the storage element and to/from the electric machine side. Moreover, along with the fast growing interest in EVs and PHEVs, wireless charging, as a new way of charging batteries, has drawn the attention of researchers, car manufacturers, and customers recently. Compared to conductive power transfer (usually plug-in), wireless power transfer (WPT) is more convenient, weather proof, and electric shock protected. However, there is still more research work needs to be done to optimize efficiency, cost, increase misalignment tolerance, and reduce size of the WPT chargers. The proposed dissertation describes the work from 2012 to 2014, during the PhD course at the Electric Drives Laboratory of the University of Udine and during my six months visiting scholarship at the University of Michigan in Dearborn. The topics studied are related to power conversion and digital control of converters and drives suitable for hybrid/electric traction, generation from renewable energy sources and wireless charging applications. From the theoretical point of view, multilevel and multiphase DC/AC and DC/DC converters are discussed here, focusing on design issues, optimization (especially from the efficiency point-of-view) and advantages. Some novel modulation algorithms for the neutral-point clamped three-level inverter are presented here as well as a new multiphase proposal for a three-level buck converter. In addition, a new active torque damping technique in order to reduce torque oscillations in internal combustion engines is proposed here. Mainly, two practical implementations are considered in this dissertation, i.e. an original two-stage bi-directional converter for mild hybrid traction and a wireless charger for electric vehicles fast charge

    Distributed control of a fault tolerant modular multilevel inverter for direct-drive wind turbine grid interfacing

    Get PDF
    Modular generator and converter topologies are being pursued for large offshore wind turbines to achieve fault tolerance and high reliability. A centralized controller presents a single critical point of failure which has prevented a truly modular and fault tolerant system from being obtained. This study analyses the inverter circuit control requirements during normal operation and grid fault ride-through, and proposes a distributed controller design to allow inverter modules to operate independently of each other. All the modules independently estimate the grid voltage magnitude and position, and the modules are synchronised together over a CAN bus. The CAN bus is also used to interleave the PWM switching of the modules and synchronise the ADC sampling. The controller structure and algorithms are tested by laboratory experiments with respect to normal operation, initial synchronization to the grid, module fault tolerance and grid fault ride-through

    An Advanced Three-Level Active Neutral-Point-Clamped Converter With Improved Fault-Tolerant Capabilities

    Get PDF
    A resilient fault-tolerant silicon carbide (SiC) three-level power converter topology is introduced based on the traditional active neutral-point-clamped converter. This novel converter topology incorporates a redundant leg to provide fault tolerance during switch open-circuit faults and short-circuit faults. Additionally, the topology is capable of maintaining full output voltage and maximum modulation index in the presence of switch open and short-circuit faults. Moreover, the redundant leg can be employed to share load current with other phase legs to balance thermal stress among semiconductor switches during normal operation. A 25-kW prototype of the novel topology was designed and constructed utilizing 1.2-kV SiC metal-oxide-semiconductor field-effect transistors. Experimental results confirm the anticipated theoretical capabilities of this new three-level converter topology
    corecore