34,245 research outputs found

    Phantom cascades: The effect of hidden nodes on information diffusion

    Full text link
    Research on information diffusion generally assumes complete knowledge of the underlying network. However, in the presence of factors such as increasing privacy awareness, restrictions on application programming interfaces (APIs) and sampling strategies, this assumption rarely holds in the real world which in turn leads to an underestimation of the size of information cascades. In this work we study the effect of hidden network structure on information diffusion processes. We characterise information cascades through activation paths traversing visible and hidden parts of the network. We quantify diffusion estimation error while varying the amount of hidden structure in five empirical and synthetic network datasets and demonstrate the effect of topological properties on this error. Finally, we suggest practical recommendations for practitioners and propose a model to predict the cascade size with minimal information regarding the underlying network.Comment: Preprint submitted to Elsevier Computer Communication

    Towards Profit Maximization for Online Social Network Providers

    Full text link
    Online Social Networks (OSNs) attract billions of users to share information and communicate where viral marketing has emerged as a new way to promote the sales of products. An OSN provider is often hired by an advertiser to conduct viral marketing campaigns. The OSN provider generates revenue from the commission paid by the advertiser which is determined by the spread of its product information. Meanwhile, to propagate influence, the activities performed by users such as viewing video ads normally induce diffusion cost to the OSN provider. In this paper, we aim to find a seed set to optimize a new profit metric that combines the benefit of influence spread with the cost of influence propagation for the OSN provider. Under many diffusion models, our profit metric is the difference between two submodular functions which is challenging to optimize as it is neither submodular nor monotone. We design a general two-phase framework to select seeds for profit maximization and develop several bounds to measure the quality of the seed set constructed. Experimental results with real OSN datasets show that our approach can achieve high approximation guarantees and significantly outperform the baseline algorithms, including state-of-the-art influence maximization algorithms.Comment: INFOCOM 2018 (Full version), 12 page

    Influence Maximization with Bandits

    Full text link
    We consider the problem of \emph{influence maximization}, the problem of maximizing the number of people that become aware of a product by finding the `best' set of `seed' users to expose the product to. Most prior work on this topic assumes that we know the probability of each user influencing each other user, or we have data that lets us estimate these influences. However, this information is typically not initially available or is difficult to obtain. To avoid this assumption, we adopt a combinatorial multi-armed bandit paradigm that estimates the influence probabilities as we sequentially try different seed sets. We establish bounds on the performance of this procedure under the existing edge-level feedback as well as a novel and more realistic node-level feedback. Beyond our theoretical results, we describe a practical implementation and experimentally demonstrate its efficiency and effectiveness on four real datasets.Comment: 12 page

    Influence Maximization Meets Efficiency and Effectiveness: A Hop-Based Approach

    Full text link
    Influence Maximization is an extensively-studied problem that targets at selecting a set of initial seed nodes in the Online Social Networks (OSNs) to spread the influence as widely as possible. However, it remains an open challenge to design fast and accurate algorithms to find solutions in large-scale OSNs. Prior Monte-Carlo-simulation-based methods are slow and not scalable, while other heuristic algorithms do not have any theoretical guarantee and they have been shown to produce poor solutions for quite some cases. In this paper, we propose hop-based algorithms that can easily scale to millions of nodes and billions of edges. Unlike previous heuristics, our proposed hop-based approaches can provide certain theoretical guarantees. Experimental evaluations with real OSN datasets demonstrate the efficiency and effectiveness of our algorithms.Comment: Extended version of the conference paper at ASONAM 2017, 11 page

    Proximal Multitask Learning over Networks with Sparsity-inducing Coregularization

    Full text link
    In this work, we consider multitask learning problems where clusters of nodes are interested in estimating their own parameter vector. Cooperation among clusters is beneficial when the optimal models of adjacent clusters have a good number of similar entries. We propose a fully distributed algorithm for solving this problem. The approach relies on minimizing a global mean-square error criterion regularized by non-differentiable terms to promote cooperation among neighboring clusters. A general diffusion forward-backward splitting strategy is introduced. Then, it is specialized to the case of sparsity promoting regularizers. A closed-form expression for the proximal operator of a weighted sum of â„“1\ell_1-norms is derived to achieve higher efficiency. We also provide conditions on the step-sizes that ensure convergence of the algorithm in the mean and mean-square error sense. Simulations are conducted to illustrate the effectiveness of the strategy
    • …
    corecore