26,465 research outputs found

    Repairing triangle meshes built from scanned point cloud

    Get PDF
    The Reverse Engineering process consists of a succession of operations that aim at creating a digital representation of a physical model. The reconstructed geometric model is often a triangle mesh built from a point cloud acquired with a scanner. Depending on both the object complexity and the scanning process, some areas of the object outer surface may never be accessible, thus inducing some deficiencies in the point cloud and, as a consequence, some holes in the resulting mesh. This is simply not acceptable in an integrated design process where the geometric models are often shared between the various applications (e.g. design, simulation, manufacturing). In this paper, we propose a complete toolbox to fill in these undesirable holes. The hole contour is first cleaned to remove badly-shaped triangles that are due to the scanner noise. A topological grid is then inserted and deformed to satisfy blending conditions with the surrounding mesh. In our approach, the shape of the inserted mesh results from the minimization of a quadratic function based on a linear mechanical model that is used to approximate the curvature variation between the inner and surrounding meshes. Additional geometric constraints can also be specified to further shape the inserted mesh. The proposed approach is illustrated with some examples coming from our prototype software

    Geometric deep learning: going beyond Euclidean data

    Get PDF
    Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them. Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field

    Reconstructing vectorised photographic images

    Get PDF
    We address the problem of representing captured images in the continuous mathematical space more usually associated with certain forms of drawn ('vector') images. Such an image is resolution-independent so can be used as a master for varying resolution-specific formats. We briefly describe the main features of a vectorising codec for photographic images, whose significance is that drawing programs can access images and image components as first-class vector objects. This paper focuses on the problem of rendering from the isochromic contour form of a vectorised image and demonstrates a new fill algorithm which could also be used in drawing generally. The fill method is described in terms of level set diffusion equations for clarity. Finally we show that image warping is both simplified and enhanced in this form and that we can demonstrate real histogram equalisation with genuinely rectangular histograms
    corecore