

Patterson, J.W., Taylor, C.D., and Willis, P.J. (2009) Reconstructing
vectorised photographic images. In: Conference for Visual Media
Production, 2009. CVMP '09., 12-13 Nov 2009, London, UK.

Copyright © 2009 IEEE

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

Content must not be changed in any way or reproduced in any format
or medium without the formal permission of the copyright holder(s)

When referring to this work, full bibliographic details must be given

http://eprints.gla.ac.uk/47879/

 Deposited on: 16 December 2010

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

RECONSTRUCTING VECTORISED PHOTOGRAPHIC
IMAGES

J.W. Patterson*, C.D. Taylor†, P.J. Willis††
*University of Glasgow, UK , jwp@dcs.gla.ac.uk

†University of Heriot-Watt, UK, C.D.Taylor@hw.ac.uk
††University of Bath, UK, P.J.Willis@bath.ac.uk

Keywords: Model-based coding, Rendering, Level Sets.

Abstract

We address the problem of representing captured images in
the continuous mathematical space more usually associated
with certain forms of drawn (‘vector’) images. Such an image
is resolution-independent so can be used as a master for
varying resolution-specific formats. We briefly describe the
main features of a vectorising codec for photographic images,
whose significance is that drawing programs can access
images and image components as first-class vector objects.
This paper focuses on the problem of rendering from the
isochromic contour form of a vectorised image and
demonstrates a new fill algorithm which could also be used in
drawing generally. The fill method is described in terms of
level set diffusion equations for clarity. Finally we show that
image warping is both simplified and enhanced in this form
and that we can demonstrate real histogram equalisation with
genuinely rectangular histograms.

1 Introduction

 A common problem in distributing digital images and
movies is that of catering for varying image or film formats.
For example a short sequence of a feature film may be shown
on standard TV (768x576), HDTV (1920x1024), internet
video (various), or even mobile phones (anything from 384 x
256 upwards). If shown for publicity reasons the producers
will want this to be shown at the best quality possible. In
effects houses which concentrate on advertising a significant
proportion of time is spent just converting between the
various digital formats on which the advertisement is to be
shown. The problem arises because all digital images have to
be sampled in order to be seen at all, but different kinds of
display device have, of necessity, to show the images at
differing resolutions. Vector formats, historically associated
with drawn images rather than with photographs, can provide
such a resolution-independent rule but none of the existing
fully automatic fill rules for vector formats work well on
photographic images. This paper describes a new fill regime
based on diffusion which results in images which are visually
indistinguishable from their originals after conversion into
and out of a vector representation.

Figure 1 : (i) Original digital photo

 (ii)Rendered: flat-fill

(iii) Rendered: interpolated fill

2009 Conference for Visual Media Production

978-0-7695-3893-8/09 $26.00 © 2009 IEEE

DOI 10.1109/CVMP.2009.14

15

There are a number of systems and plug-ins available to turn
images into vector form (e.g. Adobe Live Trace™) but they
are all compromised by the absence of a good rule for
determining varying colour values in a continuous field.
Tools like Live Trace™ extract isochromic contours from
sampled images but have to extract a sufficiently large
number of contours to preserve the illusion of a smooth
surface on a sampled display. This is because the usual rule
for automatically filling between contours is to provide a
constant colour (here called flat fill) in the viewable rasterised
version of the image so the results can be thought of as
providing a series of step changes in colour values rather than
a continuous variation in those values. In Figure 1 ii we have
used a flat fill regime on an image which was vectorised for a
diffusion-based fill regime of the kind described later in this
paper. The diffusion-based approach allows for the use of
fewer contours without compromise to the appearance of
smoother parts of the image and this has shown up a
particular weakness of flat fill in the form of visible bands of
colour changes (Mach bands). Indeed the usual application of
such systems is to produce an artistic effect rather than a
realistic outcome.

In this paper we show how to resolve this problem. As the
contours can be thought of as a model of the image they need
to be converted to a sampled image format in order to be seen
on raster display devices. Thus a rendering process, entirely
analogous to rendering processes used in 3D graphics, is
required. The problem here is, if flat-fill is insufficient, how
do we determine the intermediate pixel values between
contours when rendering back to the sampled form? This
problem and this paper's contribution to its solution are best
illustrated in Figures 1 i-iii above. In Figure 1-ii the
straightforward approach of flat fill has been taken. More
explicitly each contour footprint, here defined as the image
region uniquely enclosed by a contour, has been filled with a
constant 'average' colour. In Figure 1-iii a diffusion-based
interpolation technique (described in section 4) has been used
instead. Each rendered image was rendered from the same

contour set. In Figure 1 ii the different outcomes are quite
noticeable; flat fill shows Mach-banding artefacts which are
wholly absent with the interpolated fill of Figure 1-iii. As can
be seen in Figure 1-iii the interpolating fill technique
produces satisfactory results even though a quite simple rule
has been used to determine which contour levels to use in the
vector form.

A major problem in determining this vector form is that of
determining how many contours to use. A naïve approach
would be to use one contour for every unit of colour
quantisation but this not only produces far more contours than
are needed for a visually faithful reproduction of the image
but also far more detail in defining each contour than is
needed. If flat fill is used within contour boundaries the
inefficient naïve approach is the only technique which will
assure an artefact-free result. Techniques based on
morphological principles (e.g. [17]) do this and, while we
reference these techniques as part of the historical record, we
would like to draw a distinction between the morphological
approach and ours, notably in terms of the number of levels
required for a visually satisfactory rendering. In such an
approach all that would be needed for a visually faithful
rendering would be to fill the contour with an 'average' colour
quantised to be the border colour. In fact far fewer contours
are needed in practice as we show here. To illustrate the
contours without too much visual confusion we chose the out-
of-focus image Figure 2(i). Here the images have been
rendered from contour sets representing the YUV components
of a colour image. As can be seen in Figure 2 iii-iv and Figure
3 ii-iii there is very little detail in the U, V components so the
size of the dataset is dominated by the Y-component. (This
remains true even with a sharp, high-definition image.) The Y
component (grey-scale) is held in levels-of-10 256-bit
quantisations, i.e. the colours 127, 127+10 etc. 127-10 etc. of
which there are 25 altogether; while the U,V components are
held in levels-of-5 (so 127, 127-5, 127-10 etc.) of which there
are 49 altogether.

Figure 2 (i) colour image, (ii) Y-component (iii) U-component in grey-scale (iv) V-component in grey-scale

16

Figure 3 (i) Y-component 2-ii contourised (ii) U-component 2-iii contourised (iii) V-component 2-iv contourised

This selection of contour levels has proved satisfactory for
the images we have used here (although it is possible to
find counter-examples). The contours for the YUV
components of Figure 2-i are shown in Figure 3. The red
contours are unsmoothed versions of the green ones.
Smoothing is achieved by ‘snapping’ together end-point
tangents if they fall within a certain threshold of being
directionally opposite.

This paper is structured as follows. The next section (2)
covers previous work in this area, some of which reaches
back to the earliest days of computer graphics. Section 3
discusses the main features of the vectorising codec we
have used here, which has an encoder which works from a
raster image to produce a vector image format and a
decoder which renders the vector format back into a raster
image. Section 4 discusses the decoding stage in more
detail, and in particular the principles behind the diffusion-
based interpolating fill process. We will see that this fill
could be used just like any other area fill technique used in
rendering vector format images, and on its own would give
a drawing program (or Scalable Vector Graphics - SVG[5]
- interpreter) the ability to reconstruct contourised images
to whatever degree of fidelity is required. Section 5 shows
the results from some test images. Section 6 discusses
some common image manipulation functions, including
histogram equalisation, and here shows the consequences
of producing truly rectangular histograms which are
unachievable using sample-based techniques. Section 7
will conclude the paper and review where this work places
vector image formats.

2 Previous work

Vectorising (contourising) as applied to an array of sample
points is a technique whose origins go back to

geographical information systems [23], where contour
maps were to be produced from spot height surveys, and
was first applied directly to photographic images by
Matheron [9] and later by Serra[17] (these are the early
references to the morphological approach). At about the
same time Nakajima et al. [10] (a more accessible
reference is Agui et al. [1]) proposed an approach more
closely allied to the techniques of computer graphics. The
fill methods used in image reconstruction in all these
references is flat fill. More recently Price & Barrett [14]
and Sun et al. [20] have proposed methods for generalising
from flat fill while keeping the same number of contours
[20] or sample points [14] by building an adaptively
subdivided mesh where colours are associated with mesh
intersection points, although some interaction is required
to determine the starting shape of the mesh. Both the
method of contour finding and mesh generation (Live
Trace™[14][20] and gradient mesh tool[20] respectively)
are available in commercial drawing packages but the
papers focus on smooth colour interpolation and mesh
optimisation for minimal dataset size. However this
approach simply swaps one set of sample points for
another more feature-oriented set, as befits the type of
calculation they want to do, and offers no help to
calculations like histogram equalisation or processes
involving preserving features of the isosurface topology
(The isosurface is defined by a given set of isochromic
contours selected from the set of quantised colours used).

Another approach is to use a data-dependent triangulation
(DDT) based on a range of techniques such as the
approach used by Yu et al. [24]. Here the idea is to
adaptively triangulate the image so that each vertex is
associated with a colour and the image is reconstructed by
a barycentric interpolation between the colour values
associated with each vertex. The main part of the

17

algorithm involves an initial convex hull triangulation
based on image sample points so that triangle edges
approximately align themselves with isochromic contours
while optimising an overall smoothness function, and then
improves this triangulation by edge reconnections and
deletions. While the contours are not found explicitly, the
alignment of some edges will correspond to image features
and the optimisation steps are aimed at enhancing these
correspondences. This in effect replaces a sampled form of
the isochromic surface with an approximate triangulation
of the continuous isosurface as is commonly done in
topology [2]. However, once again there is no support for
the kinds of image operation we consider here as for
example there is no guarantee that a given isochromic
contour will be matched everywhere by a connected set of
triangle edges. There is also the question as to whether a
planar triangulation will survive an arbitrary (2D) image
warping operation.

There are, however, other approaches to the problem of
vectorising images than by using isochromic contours, for
example the ARDECO approach [7] where a
segmentation, filled by the various fills available to SVG,
is fitted to an image to within a given error bound, here a
threshold. The resulting structure can be made to support
statistical image manipulation operations like histogram
equalisation in a similar way to our diffusion approach. In
fact it is possible to extend 'flat fill' for a uniformly
quantised colour space to a diffusion-like fill using the
technique of Kim et al. [6] and that would include the
simple contourisation model we have used for the images
in this paper, but not its generalisations. As the Kim et
al.[2006] algorithm attempts to model the isosurface as a
smooth continuous surface everywhere other than at edges
(so is non-linear anywhere) this complicates the working
of an algorithm like histogram equalization, but does
provide some degree of support. Another approach which
does not use contours, but rather chooses edges as the key
feature, is that due to Orzan et al. [11] [12]. Here the idea
is to use edge-lines as the vectors and to decorate the lines
with colour data. This is then propagated away from the
edge using a Poisson equation. When used for images the
edge lines correspond to discontinuities in otherwise
smooth shading and reconstructed images look a lot like
their original forms although the unconstrained use of
Poisson equation diffusion results in quite inaccurate
diffusion boundaries. It is the insight of Lindeberg [8] (and
others) that this inaccuracy tends not to be noticed which
Orzan et al. are exploiting here. They also note ([12]) that
a similar decorated-edge representation can be used to
produce smooth-shaded images of a kind difficult to
generate by other means. Similarly the diffusion method
described in this paper could be used to generate different
forms of smooth-shaded synthetic vector image although
the method of control would be quite different.

In the end any accurate method of vectorising a
photographic image needs to have some kind of

interpretation of just what a pixel is and in essence we
make a different interpretation of an image pixel on input
to the interpretation made on output. Two papers which
discuss this problem in ways we pay particular attention to
are those due to Blinn[3] and to Smith[19]. Blinn[3]
discusses eleven distinct ways in which to consider what a
pixel actually is and this includes a discussion of the
relationship between a sample and a sensor which generate
samples, while Smith[19] makes a strong argument for not
considering a pixel as being a square over which some
simple form of integration is done (e.g. a tent filter). Pixel
generation (in the decoder) uses supersamples under the
footprint of a convolution kernel, which is quite different
to the assumptions about input although the nature of the
input environment may be taken into consideration when
deciding what the pixel value might be, for example to use
noise statistics to determine how closely to approximate
the round off in quantisation. In fact we have combined
regular 4 x 4 supersamples (sometimes 9 x 9 supersamples
on a 4 x 4 sampling grid) by integrating over a square in
all our images in this paper without being caught out, but
more stringent sampling or averaging regimes are not
excluded by our approach.

3 Main features of a vectorising codec

An image vectorising codec starts from a sampled image,
typically one obtained from a digital camera, encodes it
into an annotated contour set (the level sets) and
subsequently decodes it back into a sampled image after
image transformation processes are applied to it. In our
codec individual contours are represented by closed Bézier
chains; contours clipped by the image border are
completed by the shape of the border segment which falls
within the contour footprint. The contours are found by
first finding where they intersect lines between sample
points derived from the original pixels. A key aspect of
the input process is the explicit assumption that the pixel is
contaminated by noise which can arise from any source,
quantisation, sensor noise, even numerical inaccuracy, so
is essentially of unknown origin. For example when
considering the degree of accuracy to which the isosurface
is modelled the strictest requirement we can safely make is
that the isosurface model lies everywhere inside the error
bounds of the pixels.

Pixel error can be modelled in a number of ways,
essentially either globally or locally. The accuracy of the
value derived from the model is not critical although too
crude a model could result in retaining image noise in the
final result or a result which loses detail. While more
accurate local approaches are covered in Patterson & Willis
[13] we should say that all the images in this paper were
generated assuming a simple global noise value (±constant
around each pixel value) without apparent loss of detail due
to that assumption. If we are to attempt to preserve noise
statistics in the final image, as suggested earlier, more
accurate, local, methods will be needed.

18

Error terms ε , however derived, can be converted into
spatial error δx , δy in the x or y direction by applying the
formulae:

δx = ε ⋅ ∂φ
∂x

−1

 , δy = ε ⋅ ∂φ
∂y

−1

Here φ = φ x, y() is the continuous approximation of the
'true' isosurface. Accordingly any isochromic contour is
derived in terms of an error bound around it, initially
identified in the x, y directions and subsequently
interpolated as a ribbon of error within which the contour
may take any shape which fits. In fact we associate these
errors with points on the contour line when fitting the
Bézier chain but any fitting algorithm (e.g. the method
outlined by Schneider[16] or by Vansichem et al. [21]) has
to take into account different values for that error around
each sample point. One way to relax this condition is to
multiply the derived error values with a constant and the
consequence will be to reduce the number of segments in
the chain and increase its smoothness. It turns out that
failing to take into account the presence of noise results in
large numbers of Bézier segments in every contour as it
twists and turns around single pixel-sized 'features' which
are no more than noise-induced deviations from local
correlation. If instead we account for noise adequately we
get much smoother curves (with many fewer segments)
whose smoothness has, up to a point, no perceptible effect
on the resultant render.

Prior to contourisation the original image is re-sized by a
factor of two by interpolating additional sample points in x
and y respectively. These sample points are interpolated
using the modified linear interpolation process described
by Carrato et al [4] which biases the result towards one or
other of the interpolated pixels in the presence of a large
gradient between the sample values. Contours are found
first in terms of solving for points on the 'true' contour
with associated spatial errors (which are actually a
measure of local resolvability) in terms of the contour’s
intersections with lines through the pixel centres in the x or
y direction appropriately. Here we have done this
calculation by linear interpolation alone, that is by solving
in the appropriate direction for the point where the linear
interpolant along x or y is equal to the sought contour
value, and then interpolating between the sample errors by
the same amount. If a local error had been calculated then
it could have been used to determine which degree of
interpolation was appropriate on a solution-by solution
basis by finding which derivative approximated to zero
within the calculated error bounds for that
derivative[Patt&06]. However past experiments with a
pixel-level noise estimator have showed that for the
majority of cases (approximately two-thirds in typical
images) only linear interpolation could be justified and the
rather basic assumptions about noise made here would not

justify higher order interpolation anywhere. The resulting
polyline approximation to the ‘true’ contour is simplified
by finding the Bézier chain with the fewest segments
which fit within the error ribbon the polyline
approximation defines.

In an encoder the contour values can be determined by a
blind strategy or an adaptive strategy. In this paper we
have used a simple but (reasonably) effective blind
strategy of pre-selecting the values to be found. As a
consequence all the images in this paper are represented by
the same choice of contour levels and all the contours are
found at the same time by a single scan of the image from
top to bottom. Here we examine each pixel to see which
contours pass through a bounding box around its centre
and then join up the contours by matching adjacent
bounding box edges. This approach is only really possible
with a blind strategy as an adaptive strategy will of
necessity contain a stopping condition based on testing the
need for the contour loop under consideration.

The outcome of the process is a hierarchy of contours
(including contours R and S) defined in terms of the
relation R encloses S and the vector format consists of
rules for drawing and filling these contours in order. The
decoder ‘simply’ applies the fill rule for the footprint of
each pair of contours in the hierarchy as defined by the
footprint of the enclosing contour subtracted from the
footprint of all the contours it encloses directly (i.e. with
no intervening contours in the hierarchy).

4 Rendering between nested contours

The principal issue in rendering is to use a process which
mimics to some degree the fall-off in values of pixels from
a higher level to an adjacent lower one. The intention is to
develop a simple diffusion-based fill algorithm between
levels, as defined by level lines (isochromic contours). We
will first develop the idea in familiar level set terms and
then show how to implement it without having to solve the
differential equations which the invocation of level sets
implies. The reason for doing this is that Level Set theory
makes the issues clear in a direct and easily visualisable
manner but the complexities of solving the equations led
us to use known fast, scanline –based methods to give us
quick renders.

We derive the formulae in terms of a simple case (Figure
4) of a single outer contour with level value R surrounding
a single inner contour level S, and then generalise. We
want to arrange for the inner contour S = ψ 0() to first
expand (in the terminology of Vincent [22] 'to dilate') at a
uniform (unit) speed until it wholly contains R (Figure 4-
i). At all times the level line for φ t(), over the interval
0 ≤ t ≤ 1, gives the shape of the intermediate dilation at
instant t which we note is wholly dependent on S and has
no connection with the shape of R. If, at the same time,

19

Figure 4(i) dilation of Ψ to include Φ (ii) contraction of Φ to inside Ψ (iii) matching Φ and Ψ indices

 the corresponding level line for R is contracted ('eroded'
[22], as in Figure 4-ii) at uniform speed until it falls
wholly within S then the level lines for intermediate
erosion at time point t2 , say, will intersect the level lines
for dilation in a range around another time point t1. These
time points t1 and t2 now correspond to the times taken to
reach the nearest points on R and S respectively, so define
linear distances which can be used to interpolate colours
associated with R and S respectively at the points of
intersection of these two curves. What we are saying is
that for any point inside the region R - S (R with S
removed from within it) the shortest distances to the
boundaries of R and S respectively determine the
interpolation of the colours associated with the bounding
levels R, S at that point. These interior colours will usually
vary linearly from the values associated with one contour
to the other, but this only happens if the geodesics running
through the points in question are straight lines, i.e. the
boundaries are not occluded from the point. In more
complicated situations the interior colours will vary as
though affected by surface tension, which is likely to fit
what is actually found.

Taking the outwards direction as positive (as shown in Fig
4-i), the level set equation for the expansion (dilation) of
ψ is:

∂ψ
∂ t

= K.
∇ψ
∇ψ

 where K = 1 if distR-S ψ t(),R()> 0

0 otherwise

 (1)

Here ψ t() is the expansion of ψ 0() clipped by R = φ 0().
The function dist () gives geodesic distances of points in
R, R i() say, from S using the value of t at the points at
which ψ t()= R i().

We can obtain the morphological distance fields for
-R and +S by evaluating equation (1) and its matching
partner for the erosion [22] of R, equation (2) as in Figure
4-ii:

∂φ
∂ t

= −K.
∇φ
∇φ

 where K = 1 if distR-S φ t(),S()> 0

0 otherwise

 (2)

This will give two Euclidean distances t1,t2 , where
φ t1()= ψ t2() at zero or more points inside R – S (as in
Figure 4-iii) so we can calculate the colour values C of
those points from the colours CR , CS associated with level
lines R and S respectively as:

C = CR ⋅ t2

t1 + t2

 + CS ⋅ t1

t1 + t2

We have used diffusion twice to give us morphological
distances from each point in space in terms of the time to
reach each of the two levels (here the speed of travel is
unity so time = distance). When normalised by the sum of
the distances this gives us an interpolation ratio between
the two contour values which is linear for simple
geometries but quadratic with a positive curvature - quite
similar to the effects of surface tension - when the contour
geometry becomes complicated. We refer to this process
as double diffusion and note that isochromic lines are in
effect interpolants between the shapes of the inner and
outer contours, so it should properly be called double
diffusion interpolation. For this paper we used a
computationally simpler measure than Euclidean distance,
namely Manhattan distance, calculated outwards
(inwards) from a border defined in terms of those pixels
which contained the border contour. The Manhattan
distance can be calculated like a fill process in which
successive erosions or dilations define an ascending index
starting at 1. Although the Manhattan distance is always an
overestimate this tends to get normalised by the division of
indices calculated in the same way. If the calculation of
dilation (or erosion) is carried out in a quantised manner
this naturally supports Manhattan distances, but if it is
carried out continuously (e.g. by equations 1 and 2) this
naturally supports Euclidean distances and the precise
calculation of interpolants which are smooth everywhere.

20

Figure 5(i):Original ‘Lena’ image (ii) Rendered from contours (x 1 scale)

(iii): (i) Scaled x 4 (bilinear) (iv) Control points from (ii) scaled x 4

(v): (i) Scaled x 8 (bilinear) (vi) Control points from (ii) scaled x 8

21

5. Example applications

Apart from Figure 1 all the examples showing our
interpolation approach are applied to the reconstruction of
YUV images with Y at intervals of 10 and UV at intervals
of 5. In Figure 5-i and we show an original pixel image
(the standard test image ‘Lena’) and its re-rendered
equivalent in Figure 5-ii. At intervals of 10 between Y
levels the re-render is visually indistinguishable from the
original (input spatial resolution 256x257).

Additionally we have shown in Figure 5-iii and 5-v two
portions of ‘Lena’ scaled up by x 4 and x 8 respectively
using bilinear interpolation (which is often preferred over
higher order methods). As one expects the detail becomes
more blurred. By comparison we have scaled the control
points for the contours in Figure 5-ii, again by x 4 and x 8
and rendered these as in Figures 5-iv and –vi where we can
see that more detail has been carried into Figure 5 –vi than
in Figure 5 –v.

For our second application we chose a different kind of
operation, histogram equalisation. The purpose behind
histogram equalisation is to adjust pixel values so that each
sub-region of the image yields equal energy. Properly
histogram-equalised images should show the highest
contrast everywhere in the image and this is supported by
a rectangular histogram across the range, particularly for
the Y component of a YUV image. Unfortunately pixel-
based histogram equalisation usually only manages to
achieve the sort of result in Figure 6-i. The diffusion
interpolating technique however does not require level
lines to be associated with integral values although one
might start out that way. Instead one could determine what
level values would give the nearest to a rectangular
histogram. The neatest way of doing this would be to start
off with contours of values which vary in powers of 2 from
127, i.e. 127, 63, 191, 31, 47, 159, 223 etc. The 127
contour should partition the image area exactly in half and
if not, its value needs to be reassigned to whichever
contour comes closest to achieving that partition.

Figure 6 (i) histogram equalized by pixel reassignment (ii) same by level reassignment

22

We note that if the 127 level covers exactly half the image
area then the 63 contour should cover half of that half (and
the 191 level covers half of the other half plus a half) etc.
In other words each level l can be re-assigned according to
the proportion of pixels that the contour footprint should
cover, e.g. as assigned by a 1:1 mapping H l(). We re-
assign the levels by indexing the inverse function H −1()
by the proportion p of pixels actually covered (0 ≤ p ≤ 1).
Here H l()= 2ln l +1()−8 so H −1 p()= p* 28 −1 (for an 8-bit
per primary quantised colour space).

Figure 6 shows the results of performing histogram
equalisation in this way. Here the first row shows the
resultant images and the second row shows the
corresponding histograms. It is clear that the right hand
image Figure 6 (ii) has the strongest contrast enhancement
of the two images and in particular lacks the artefacts of
the left image Figure 7(i) which are in the main caused by
the gaps introduced by pixel reassignment in the
histogram.

6. Conclusions
Vector formats for photographic images have been studied
for various purposes since the mid 1970s and there are
broadly two approaches, the morphological approach
which in effect requires every individual quantisation of
the colour level to be represented, and the topological
approach which attempts to model the isosurface as
economically as possible. Level sets, as we have used
them here, are a bridge between the two approaches and
can benefit from results in either. Many image
manipulation operations on this form are both simpler and
seem to give better results (as here, warping and histogram
equalisation) than their raster equivalents. One kind of
transformation is particularly straightforward, that of
varying the colour depth resolution in the resulting image.
This is because the final samples for the observed image
are calculated as a convolution of samples into the
continuous field and these need then to be quantised to
whatever colour depth is required. Thus the vector form is
independent both of spatial and colour depth resolutions in
the original input.

However there are residual problems with the vector
approach which can be summarised in terms of conversion
speed and file size. Conversion times in and out of the
vector format are approximately linear with input image
size although it is known that images with a lot of high
frequency detail take longer to encode and decode than
images with a more usual distribution of frequencies. For
example the 'mandrill' image (another one of the standard
test set) takes twice as long to encode as 'Lena'. On a
500MHz PC 'Lena' at 256x257 took 15 seconds to encode
and 20 seconds to decode, but this is without any graphics
acceleration assist. The codec is (by intention) well-suited
to streaming and parallelisation. Our view is that, given the

degree of support available for graphics processes, these
times will be significantly improved in practice. On the
other hand the fixed contour level setting strategy resulted
in file sizes 10x larger than their pixel equivalents which
we did not attempt to address in the work being reported
here. However, the results of Lindeberg [1998] suggest we
have been far too conservative in fixing the local
resolution of contour segments in smooth areas. If we
compute a resolution measure which scales with local
smoothness we should be able to significantly reduce the
number of segments per contour. We have also
(knowingly) been far too conservative in the numbers of
contours we find, possibly by as much as a factor of 20,
but it will take a (much more complex) adaptive encoder
to find the local optima. Compression is an obvious focus
for future work.

Our original concern was to be able to reproduce
photographic images from contour form so that they
looked visually indistinguishable from the original. In this
we were generally successful. Reliably better results could
be obtained with an adaptive encoder which starts as we
have done here by encoding contour 127 then splitting the
intervals on either side etc. Such an adaptive encoder (e.g.
Patt& [2006]) would maintain a test render and only split
an interval further if the pre-render resulted in pixel values
falling outside the assumed error bounds around the
original pixels. Where this condition happened locally, a
local decision to subdivide further could be taken. We
estimate that such a codec would take twice as long to
encode than our fixed-level encoder. It would take
considerably less time to decode, although this time would
be more image-dependent than before. File size should be
significantly improved also. The gains here also depend on
the noise-estimation method used as well as the extent to
which the diffusion process mimics the expected variation
of pixels values within a contour footprint. Here there are a
number of possible improvements to be made.

The main improvement is to use a standard level set
approach [18] of adding or subtracting (depending on the
sign convention used) the traversal speed of the level line
with a (usually) small amount, calculated as (say) 0.01 x
curvature, where curvature is calculated as ∇⋅

∇Ψ
∇Ψ

. This

has the effect of smoothing out 'shocks' or discontinuities
in the evolving line, which is a common problem in
interpolating systems [15]. (We note also that loops are
another problem with 2D interpolators but the rules for
interpreting Level Set solutions explicitly precludes these
under the ‘weakest solution’ rule; instead the loop is cut
off at a point which often leaves a visible shock.) Shocks
also arise when two advancing fronts intersect one another
but again the 'weakest solution' [18] applies to determine a
single front. Again the foregoing modification smoothes
away the discontinuities, but the calculated indices are no
longer computed from wholly linear (Euclidean) distance

23

values. It is also possible to manipulate these indices
further so that tangents in the trajectories of index values
are matched across contour boundaries to achieve G1
continuity (C1 can be achieved with greater difficulty,
typically as a post-process if needed after establishing G1).
While we would expect an improvement in image quality
(and a matching improvement in file size) by these
measures, such improvements are usually visually
unnoticeable in an unwarped image.

Our motivation for this work has been based on the
intuition that contours will commonly follow the features
of objects in the image. We hope in the future to be able to
show that 'difficult' operations like matte-pulling and hole-
filling will be enhanced by vector formats in addition to
the processes whose enhancement we have already
demonstrated. Image re-sizing is such an example where
the vector format can be exploited to define localised
warps aimed at preserving the slope angle at edges. This
has the effect of retaining feature sharpness but vector
image resizing under various regimes is potentially the
subject of an entire paper in itself, so, despite its
importance to some industries, this has not been discussed
here. What we have shown already is that there is a viable
continuous image format and that it can be used for some
conventional operations which are not handled easily in
sampled formats. Moreover, while the representation
cannot reveal more detail than in the original sampled
image, it does offer a robust model of that image, with all
the advantages of being able to render it at different
qualities for different devices. It thus has the advantages
that SVG offers for graphical pictures but with the ability
to deliver the full quality of photographically-captured
images.

Acknowledgements

We acknowledge funding from the Scottish Enterprise
Proof-of-Concept Plus programme and wish especially to
acknowledge the work of Peter Balch (Analogue
Information Systems Ltd) who implemented the code from
which the examples to this paper were produced. We thank
the referees for their helpful comments.

References

[1] T. Agui et al. An Automatic Interpolation Method of
Gray-Valued Images Utilising Density Contour Lines.
Proc EUROGRAPHICS '87 (August 1987) pp 405-
421

[2] M. Armstrong. Basic Topology. Springer Science, New
York 1983

[3] J. Blinn. What is a Pixel? IEEE CG&A
(September/October), 82-87 (Jim Blinn's Corner)
2005

[4] S. Carrato et. al. A Simple Edge-Sensitive Image
Interpolation Filter. Proc. Int. Conf. Image
Processing, 1996 pp 311-314.

[5] D. Duce et. al. SVG Tutorial. W3C 2000 & 2002
[6] T-H Kim et al. Image Dequantisation: Restoration of

Quantized Colours. Computer Graphics FORUM 26
(3) 2007 pp 619-626

[7] G. Lecot, B. Levy. ARDECO: Automatic Region
Detection and Conversion. Proc. Eurographics
Symposium on Rendering 2006 pp 1604-1616

[8] T. Lindeberg. Edge Detection and Ridge Detection
with Automatic Scale Selection. Int. J. Comp. Vis.
30, 2, pp117-154

[9] G. Matheron. Random Sets and Integral Geometry.
Wiley, New York 1975

[10] M. Nakajima et. al. Coding Method of Gray-Valued
Image by Density Contour Lines. Tech. Rep. I.E.C.E.
Japan IE83-74 (1983) pp 1-6

[11] A. Orzan A et. al. Structure Preserving Manipulation
of Photographs. Proc. NPAR 2007 pp103-110

[12] A. Orzan et. al. Diffusion Curves: A Vector
Representation for Smooth-Shade Images. Proc.
SIGGRAPH 2008

[13] J. Patterson, P. Willis. Method for Image Processing
and Vectorisation. Patent Application 0613199.9,
May 2006, University of Glasgow

[14] B. Price, W. Barrett, Object-Based Vectorisation for
Interactive Image Editing. Vis. Comp. 22 (9-11) 2006
pp 661-670

[15] W. Reeves. In-betweening for Computer Animation
Utilising Moving Point Constraints. Computer
Graphics (Proc SIGGRAPH 81) 15 (3) pp 269-276

[16] P. Schneider. An Algorithm for Automatically Fitting
Digitised Curves. in Graphic Gems, Glassner A. ed.
Academic Press, San Diego & London 1990

[17] J. Serra. Image Analysis and Mathematical
Morphology. Academic Press, London 1982

[18] J. Sethian. Level Set methods and Fast Marching
Methods. Second Edition, CUP, Cambridge 1999

[19] A. R. Smith. A Pixel is Not a Little Square, A Pixel is
Not a Little Square, A Pixel is Not a Little Square!
(And a Voxel is Not a Little Cube)” Technical Memo
6, Microsoft Research, 1995

[20] J. Sun et al. Image Vectorisation using Optimized
Gradient Meshes. ACM TOG 26 (3) 2007 pp 11-1-7

[21] G. Vansichem et. al. Real-Time Modelled Drawing
and Manipulation of Stylised Characters in a Cartoon
Animation Context. Proc. IASTED International
Conference on Computer Graphics and Imaging
(CGIM 2001), Honolulu, Hawaii, USA, 2001 pp 44-
49

[22] L. Vincent. Morphological Grayscale Reconstruction
in Image Analysis: Applications and Efficient
Algorithms. IEEE Trans. IP 2 (2) April 1993 pp 176-
201

[23] W. Warntz, M. Woldenberg. Concepts and
Applications –Spatial order Harvard papers in
Theoretical Geography No 1, May 1967

[24] X. Yu et al. Image Reconstruction Using Data-
Dependent Triangulation. IEEE CG&A 21 (2001) pp
62-68

24

	citation_temp.pdf
	http://eprints.gla.ac.uk/47879/

