298 research outputs found

    Diffusion Maps, Spectral Clustering and Eigenfunctions of Fokker-Planck operators

    Full text link
    This paper presents a diffusion based probabilistic interpretation of spectral clustering and dimensionality reduction algorithms that use the eigenvectors of the normalized graph Laplacian. Given the pairwise adjacency matrix of all points, we define a diffusion distance between any two data points and show that the low dimensional representation of the data by the first few eigenvectors of the corresponding Markov matrix is optimal under a certain mean squared error criterion. Furthermore, assuming that data points are random samples from a density p(\x) = e^{-U(\x)} we identify these eigenvectors as discrete approximations of eigenfunctions of a Fokker-Planck operator in a potential 2U(\x) with reflecting boundary conditions. Finally, applying known results regarding the eigenvalues and eigenfunctions of the continuous Fokker-Planck operator, we provide a mathematical justification for the success of spectral clustering and dimensional reduction algorithms based on these first few eigenvectors. This analysis elucidates, in terms of the characteristics of diffusion processes, many empirical findings regarding spectral clustering algorithms.Comment: submitted to NIPS 200

    Generalised Ornstein-Uhlenbeck processes

    Full text link
    We solve a physically significant extension of a classic problem in the theory of diffusion, namely the Ornstein-Uhlenbeck process [G. E. Ornstein and L. S. Uhlenbeck, Phys. Rev. 36, 823, (1930)]. Our generalised Ornstein-Uhlenbeck systems include a force which depends upon the position of the particle, as well as upon time. They exhibit anomalous diffusion at short times, and non-Maxwellian velocity distributions in equilibrium. Two approaches are used. Some statistics are obtained from a closed-form expression for the propagator of the Fokker-Planck equation for the case where the particle is initially at rest. In the general case we use spectral decomposition of a Fokker-Planck equation, employing nonlinear creation and annihilation operators to generate the spectrum which consists of two staggered ladders.Comment: 24 pages, 2 figure

    Nonparametric Uncertainty Quantification for Stochastic Gradient Flows

    Full text link
    This paper presents a nonparametric statistical modeling method for quantifying uncertainty in stochastic gradient systems with isotropic diffusion. The central idea is to apply the diffusion maps algorithm to a training data set to produce a stochastic matrix whose generator is a discrete approximation to the backward Kolmogorov operator of the underlying dynamics. The eigenvectors of this stochastic matrix, which we will refer to as the diffusion coordinates, are discrete approximations to the eigenfunctions of the Kolmogorov operator and form an orthonormal basis for functions defined on the data set. Using this basis, we consider the projection of three uncertainty quantification (UQ) problems (prediction, filtering, and response) into the diffusion coordinates. In these coordinates, the nonlinear prediction and response problems reduce to solving systems of infinite-dimensional linear ordinary differential equations. Similarly, the continuous-time nonlinear filtering problem reduces to solving a system of infinite-dimensional linear stochastic differential equations. Solving the UQ problems then reduces to solving the corresponding truncated linear systems in finitely many diffusion coordinates. By solving these systems we give a model-free algorithm for UQ on gradient flow systems with isotropic diffusion. We numerically verify these algorithms on a 1-dimensional linear gradient flow system where the analytic solutions of the UQ problems are known. We also apply the algorithm to a chaotically forced nonlinear gradient flow system which is known to be well approximated as a stochastically forced gradient flow.Comment: Find the associated videos at: http://personal.psu.edu/thb11

    Data-driven model reduction and transfer operator approximation

    Get PDF
    In this review paper, we will present different data-driven dimension reduction techniques for dynamical systems that are based on transfer operator theory as well as methods to approximate transfer operators and their eigenvalues, eigenfunctions, and eigenmodes. The goal is to point out similarities and differences between methods developed independently by the dynamical systems, fluid dynamics, and molecular dynamics communities such as time-lagged independent component analysis (TICA), dynamic mode decomposition (DMD), and their respective generalizations. As a result, extensions and best practices developed for one particular method can be carried over to other related methods

    Variable-free exploration of stochastic models: a gene regulatory network example

    Get PDF
    Finding coarse-grained, low-dimensional descriptions is an important task in the analysis of complex, stochastic models of gene regulatory networks. This task involves (a) identifying observables that best describe the state of these complex systems and (b) characterizing the dynamics of the observables. In a previous paper [13], we assumed that good observables were known a priori, and presented an equation-free approach to approximate coarse-grained quantities (i.e, effective drift and diffusion coefficients) that characterize the long-time behavior of the observables. Here we use diffusion maps [9] to extract appropriate observables ("reduction coordinates") in an automated fashion; these involve the leading eigenvectors of a weighted Laplacian on a graph constructed from network simulation data. We present lifting and restriction procedures for translating between physical variables and these data-based observables. These procedures allow us to perform equation-free coarse-grained, computations characterizing the long-term dynamics through the design and processing of short bursts of stochastic simulation initialized at appropriate values of the data-based observables.Comment: 26 pages, 9 figure

    Transition manifolds of complex metastable systems: Theory and data-driven computation of effective dynamics

    Get PDF
    We consider complex dynamical systems showing metastable behavior but no local separation of fast and slow time scales. The article raises the question of whether such systems exhibit a low-dimensional manifold supporting its effective dynamics. For answering this question, we aim at finding nonlinear coordinates, called reaction coordinates, such that the projection of the dynamics onto these coordinates preserves the dominant time scales of the dynamics. We show that, based on a specific reducibility property, the existence of good low-dimensional reaction coordinates preserving the dominant time scales is guaranteed. Based on this theoretical framework, we develop and test a novel numerical approach for computing good reaction coordinates. The proposed algorithmic approach is fully local and thus not prone to the curse of dimension with respect to the state space of the dynamics. Hence, it is a promising method for data-based model reduction of complex dynamical systems such as molecular dynamics

    Diffusion maps tailored to arbitrary non-degenerate Ito processes

    Get PDF
    We present two generalizations of the popular diffusion maps algorithm. The first generalization replaces the drift term in diffusion maps, which is the gradient of the sampling density, with the gradient of an arbitrary density of interest which is known up to a normalization constant. The second generalization allows for a diffusion map type approximation of the forward and backward generators of general Ito diffusions with given drift and diffusion coefficients. We use the local kernels introduced by Berry and Sauer, but allow for arbitrary sampling densities. We provide numerical illustrations to demonstrate that this opens up many new applications for diffusion maps as a tool to organize point cloud data, including biased or corrupted samples, dimension reduction for dynamical systems, detection of almost invariant regions in flow fields, and importance sampling

    Coarse-grained dynamics of an activity bump in a neural field model

    Full text link
    We study a stochastic nonlocal PDE, arising in the context of modelling spatially distributed neural activity, which is capable of sustaining stationary and moving spatially-localized ``activity bumps''. This system is known to undergo a pitchfork bifurcation in bump speed as a parameter (the strength of adaptation) is changed; yet increasing the noise intensity effectively slowed the motion of the bump. Here we revisit the system from the point of view of describing the high-dimensional stochastic dynamics in terms of the effective dynamics of a single scalar "coarse" variable. We show that such a reduced description in the form of an effective Langevin equation characterized by a double-well potential is quantitatively successful. The effective potential can be extracted using short, appropriately-initialized bursts of direct simulation. We demonstrate this approach in terms of (a) an experience-based "intelligent" choice of the coarse observable and (b) an observable obtained through data-mining direct simulation results, using a diffusion map approach.Comment: Corrected aknowledgement

    Geometrical Methods for the Analysis of Simulation Bundles

    Get PDF
    Efficiently analyzing large amounts of high dimensional data derived from the simulation of industrial products is a challenge that is confronted in this thesis. For this purpose, simulations are considered as abstract objects and assumed to be living in lower dimensional space. The aim of this thesis is to characterize and analyze these simulations, this is done by examining two different approaches. Firstly, from the perspective of manifold learning using diffusion maps and demonstrating its application and merits; the inherent assumption of manifold learning is that high dimensional data can be considered to be located on a low dimensional abstract manifold. Unfortunately, this can not be verified in practical applications as it would require the existence of several thousand datasets, where in reality only a few hundred are available due to computational costs. To overcome these restrictions, a new way of characterizing the set of simulations is proposed where it is assumed that transformations send simulations to other simulations. Under this assumption, the theoretical framework of shape spaces can be applied wherein a quotient space of a pre-shape space (the space of simulations shapes) modulo a transformation group is used. It is propound to add into this setting, the construction of positive definite operators that are assumed invariant to specific transformations. They are built using only one simulation and as a consequence all other simulations can be projected to the eigen-basis of these operators. A new representation of all simulations is thus obtained based on the projection coefficients in a very much analogous way to the use of the Fourier transformation. The new representation is shown to be significantly reduced, depending on the smoothness of the data. Several industrial applications for time dependent datasets from engineering simulations are provided to demonstrate the usefulness of the method and put forward several research directions and possible new applications
    corecore