9,419 research outputs found

    Graduate Catalog of Studies, 2023-2024

    Get PDF

    Neutron scattering studies of heterogeneous catalysis

    Get PDF
    Understanding the structural dynamics/evolution of catalysts and the related surface chemistry is essential for establishing structure–catalysis relationships, where spectroscopic and scattering tools play a crucial role. Among many such tools, neutron scattering, though less-known, has a unique power for investigating catalytic phenomena. Since neutrons interact with the nuclei of matter, the neutron–nucleon interaction provides unique information on light elements (mainly hydrogen), neighboring elements, and isotopes, which are complementary to X-ray and photon-based techniques. Neutron vibrational spectroscopy has been the most utilized neutron scattering approach for heterogeneous catalysis research by providing chemical information on surface/bulk species (mostly H-containing) and reaction chemistry. Neutron diffraction and quasielastic neutron scattering can also supply important information on catalyst structures and dynamics of surface species. Other neutron approaches, such as small angle neutron scattering and neutron imaging, have been much less used but still give distinctive catalytic information. This review provides a comprehensive overview of recent advances in neutron scattering investigations of heterogeneous catalysis, focusing on surface adsorbates, reaction mechanisms, and catalyst structural changes revealed by neutron spectroscopy, diffraction, quasielastic neutron scattering, and other neutron techniques. Perspectives are also provided on the challenges and future opportunities in neutron scattering studies of heterogeneous catalysis

    A Molybdenum(VI) Complex of 5-(2-pyridyl-1-oxide)tetrazole: synthesis, structure, and transformation into a MoO3-Based hybrid catalyst for the epoxidation of Bio-Olefins

    Get PDF
    The discovery of heterogeneous catalysts synthesized in easy, sustainable ways for the valorization of olefins derived from renewable biomass is attractive from environmental, sustainability, and economic viewpoints. Here, an organic–inorganic hybrid catalyst formulated as [MoO3 (Hpto)]·H2O (2), where Hpto = 5-(2-pyridyl-1-oxide)tetrazole, was prepared by a hydrolysis– condensation reaction of the complex [MoO2Cl2 (Hpto)]·THF (1). The characterization of 1 and 2 by FT-IR and Raman spectroscopies, as well as 13C solid-state NMR, suggests that the bidentate N,O-coordination of Hpto in 1 (forming a six-membered chelate ring, confirmed by X-ray crystallography) is maintained in 2, with the ligand coordinated to a molybdenum oxide substructure. Catalytic studies suggested that 2 is a rare case of a molybdenum oxide/organic hybrid that acts as a stable solid catalyst for olefin epoxidation with tert-butyl hydroperoxide. The catalyst was effective for converting biobased olefins, namely fatty acid methyl esters (methyl oleate, methyl linoleate, methyl linolenate, and methyl ricinoleate) and the terpene limonene, leading predominantly to the corresponding epoxide products with yields in the range of 85–100% after 24 h at 70 ◦C. The versatility of catalyst 2 was shown by its effectiveness for the oxidation of sulfides into sulfoxides and sulfones, at 35 ◦C (quantitative yield of sulfoxide plus sulfone, at 24 h; sulfone yields in the range of 77–86%). To the best of our knowledge, 2 is the first molybdenum catalyst reported for methyl linolenate epoxidation, and the first of the family [MoO3 (L)x] studied for methyl ricinoleate epoxidation.LA/P/0006/2020; POCI-01-0145-FEDER-030075; ALG-01-0145-FEDER-022121; grant ref. 2021.06403.BD; grant ref. 2021.04756.BD;info:eu-repo/semantics/publishedVersio

    Rational development of stabilized cyclic disulfide redox probes and bioreductive prodrugs to target dithiol oxidoreductases

    Get PDF
    Countless biological processes allow cells to develop, survive, and proliferate. Among these, tightly balanced regulatory enzymatic pathways that can respond rapidly to external impacts maintain dynamic physiological homeostasis. More specifically, redox homeostasis broadly affects cellular metabolism and proliferation, with major contributions by thiol/disulfide oxidoreductase systems, in particular, the Thioredoxin Reductase Thioredoxin (TrxR/Trx) and the Glutathione Reductase-Glutathione-Glutaredoxin (GR/GSH/Grx) systems. These cascades drive vital cellular functions in many ways through signaling, regulating other proteins' activity by redox switches, and by stoichiometric reductant transfers in metabolism and antioxidant systems. Increasing evidence argues that there is a persistent alteration of the redox environment in certain pathological states, such as cancer, that heavily involve the Trx system: upregulation and/or overactivity of the Trx system may support or drive cancer progression, making both TrxR and Trx promising targets for anti-cancer drug development. Understanding the biochemical mechanisms and connections between certain redox cascades requires research tools that interact with them. The state-of-the-art genetic tools are mostly ratiometric reporters that measure reduced:oxidized ratios of selected redox pairs or the general thiol pool. However, the precise cellular roles of the central oxidoreductase systems, including TrxR and Trx, remain inaccessible due to the lack of probes to selectively measure turnover by either of these proteins. However, such probes would allow measuring their effective reductive activity apart from expression levels in native systems, including in cells, animals, or patient samples. They are also of high interest to identify chemical inhibitors for TrxR/Trx in cells and to validate their potential use as anti-cancer agents (to date, there is no selective cellular Trx inhibitor, and most known TrxR inhibitors were not comprehensively evaluated considering selectivity and potential off-targets). However, small molecule redox imaging tools are underdeveloped: their protein specificity, spectral properties, and applicability remain poorly precedented. This work aimed to address this opportunity gap and develop novel, small molecule diagnostic and therapeutic tools to selectively target the Trx system based on a modular trigger cargo design: artificial cyclic disulfide substrates (trigger) for oxidoreductases are tethered to molecular agents (cargo) such that the cargo’s activity is masked and is re-established only through reduction by a target protein. The rational design of these novel reduction sensors to target the cell's strongest disulfide-reducing enzymes was driven by the following principles: (i) cyclic disulfide triggers with stabilized ring systems were used to gain low reduction potentials that should resist reduction except by the strongest cellular reductases, such as Trx; and (ii) the cyclic topology also offers the potential for kinetic reversibility that should select for dithiol-type redox proteins over the cellular monothiol background. Creating imaging agents based on such two-component designs to selectively measure redox protein activity in native cells required to combine the correct trigger reducibility, probe activation kinetics, and imaging modalities and to consider the overall molecular architecture. The major prior art in this field has applied cyclic 5-membered disulfides (1,2 dithiolanes) as substrates for TrxR in a similar way to create such tools. However, this motif was described elsewhere as thermodynamically instable and was due to widely used for dynamic covalent cascade reactions. By comparing a novel 1,2 dithiolane-based probe to the state-of-the-art probes, including commercial TrxR sensors, by screening a conclusive assay panel of cellular TrxR modulations, I clarified that 1,2 dithiolanes are not selective substrates for TrxR in biological settings (Nat Commun 2022). Instead, aiming for more stable ring systems and thus more robust redox probes, during this work, I developed bicyclic 6 membered disulfides (piperidine fused 1,2 dithianes) with remarkably low reduction potentials. I showed that molecular probes using them as reduction sensors can be mostly processed by thioredoxins while being stable against reduction by GSH. The thermodynamically stabilized decalin like topology of the cis-annelated 1,2 dithianes requires particularly strong reductants to be cleaved. They also select for dithiol type redox proteins, like Trx, based on kinetic reversibility and offer fast cyclization due to the preorganization by annelation (JACS 2021). This work further expanded the system’s modularity with structural cores based on piperazine-fused 1,2 dithianes with the two amines allowing independent derivatization. Diagnostic tools using them as reduction sensors proved equally robust but with highly improved activation kinetics and were thus cellularly activated. Cellular studies evolved that they are substrates for both Trxs and their protein cousins Grxs, so measuring the cellular dithiol protein pool rather than solely Trx activity (preprint 2023). Finally, a trigger based on a slightly adapted reduction sensor, a desymmetrized 1,2 thiaselenane, was designed for selective reduction by TrxR’s selenol/thiol active site, then combined with a precipitating large Stokes’ shift fluorophore and a solubilizing group, to evolve the first selective probe RX1 to measure cellular TrxR activity, which even allowed high throughput inhibitor screening (Chem 2022). The central principle of this work was further advanced to therapeutic prodrugs based on the duocarmycin cargo (CBI) with tunable potency (JACS Au 2022) that can be used to create off-to-on therapeutic prodrugs. Such CBI prodrugs employing stabilized 1,2 dichalcogenide triggers proved to be cytotoxins that depend on Trx system activity in cells. They could further be exploited for cell-line dependent reductase activity profiling by screening their redox activation indices, the reduction-dependent part of total prodrug activation, in 177 cell lines. Beyond that, these prodrugs were well-tolerated in animals and showed anti-cancer efficacy in vivo in two distinct mouse tumor models (preprint 2022). Taken together, I introduced unique monothiol-resistant reducible motifs to target the cellular Trx system with chemocompatible units for each for TrxR and Trx/Grx, where the cyclic nature of the dichalcogenides avoids activation by GSH. By using them with distinct molecular cargos, I developed novel selective fluorescent reporter probes; and introduced a new class of bioreductive therapeutic constructs based on a common modular design. These were either applied to selectively measure cellular reductase activity or to deliver cytotoxic anti cancer agents in vivo. Ongoing work aims to differentiate between the two major redox effector proteins Trx and Grx, requiring additional layers of selectivity that may be addressed by tuned molecular recognition. The flexible use of various molecular cargos allows harnessing the same cellular redox machinery by either probes or prodrugs. This allows predictive conclusions from diagnostics to be directly translated into therapy and offers great potential for future adaptation to other enzyme classes and therapeutic venues.Die zelluläre Redox-Homöostase hängt von Thiol/Disulfid-Oxidoreduktasen ab, die den Stoffwechsel, die Proliferation und die antioxidative Antwort von Zellen beeinflussen. Die wichtigsten Netzwerke sind die Thioredoxin Reduktase-Thioredoxin (TrxR/Trx) und Glutathion Reduktase-Glutathion-Glutaredoxin (GR/GSH/Grx) Systeme, die über Redox-Schalter in Substratproteinen lebenswichtige zelluläre Funktionen steuern und so an der Redox-Regulation und -Signalübertragung beteiligt sind. Persistente Veränderungen des Redoxmilieus in pathologischen Zuständen, wie z. B. bei Krebs, sind in hohem Maße mit dem Trx-System verbunden. Eine Hochregulierung und/oder Überaktivität des Trx-Systems, die bei vielen Krebsarten auftreten, unterstützt zudem das Fortschreiten des Krebswachstums, was TrxR/Trx zu vielversprechenden Zielproteinen für die Entwicklung neuer Krebsmedikamente macht. Um die biochemischen Prozesse dahinter zu erforschen, sind spezielle Techniken zur Visualisierung und Messung enzymatischer Aktivität nötig. Die hierzu geeigneten, meist genetischen Sensoren messen ratiometrisch das Verhältnis reduzierter/oxidierter Spezies in zellulärem Umfeld oder spezifisch ausgewählte Redoxpaare. Die weitere Erforschung der exakten Funktion von TrxR/Trx und deren Substrate ist jedoch durch mangelnde Nachweismethoden limitiert. Diese sind außerdem zur Validierung chemischer Hemmstoffe für TrxR/Trx in Zellen und deren potenziellen Verwendung als Krebsmittel von großem Interesse. Bislang gibt es keinen selektiven zellulären Trx-Inhibitor und potenzielle Off-Target-Effekte der bekannten TrxR-Inhibitoren wurden nicht abschließend bewertet. Ziel dieser Arbeit ist die Entwicklung niedermolekularer, diagnostischer und therapeutischer Werkzeuge, die selektiv auf das Trx-System abzielen und auf einem modularen Trigger-Cargo Design basieren. Hierzu werden zyklische Disulfid-Substrate (Trigger) für Oxidoreduktasen so mit molekularen Wirkstoffen (Cargo) verknüpft, dass dabei die Wirkstoffaktivität maskiert, und erst nach Reduktion durch ein Zielprotein wiederhergestellt wird. Diese neuartigen, synthetischen Reduktionssensoren basieren auf den folgenden Grundprinzipien: (i) Zyklische Disulfide sind thermodynamisch stabilisiert und können nur durch die stärksten Reduktasen gespalten werden; und (ii) die zyklische Topologie ermöglicht die kinetische Reversibilität der zwei Thiol-Disulfid-Austauschreaktionen, die eine erste Reaktion mit Monothiolen, wie z. B. GSH, sofort umkehrt und so eine vollständige Reduktion verhindert. Die meisten früheren Arbeiten auf diesem Gebiet verwendeten ein zyklisches, fünfgliedriges Disulfid (1,2 Dithiolan) als Substrat für TrxR. Das gleiche Strukturmotiv wurde jedoch an anderer Stelle als thermodynamisch instabil beschrieben und aufgrund dieser Eigenschaft explizit für dynamische Kaskadenreaktionen verwendet. Deshalb vergleicht diese Arbeit zu Beginn einen neuen 1,2 Dithiolan basierten fluorogenen Indikator mit bestehenden, z. T. kommerziellen, Redox Sonden für TrxR in einer Reihe von Zellkultur-Experimenten unter Modulation der zellulären TrxR Aktivität und stellt so einen Widerspruch in der Literatur klar: 1,2 Dithiolane eignen sich nicht als selektive Substrate für TrxR, da sie labil sowohl gegen die Reduktion durch andere Redoxproteine, als auch gegen den Monothiol Hintergrund in Zellen sind (Nat. Commun. 2022). Als alternatives Strukturmotiv wird in dieser Arbeit ein bizyklisches sechsgliedriges Disulfid (anneliertes 1,2 Dithian) etabliert. Durch sein niedriges Reduktionspotenzial, also seine hohe Resistenz gegen Reduktion, werden molekulare Sonden basierend auf diesem 1,2 Dithian als Reduktionssensor fast ausschließlich von Trx aktiviert, nicht aber von TrxR oder GSH (JACS 2021). Dieses Kernmotiv bestimmt dabei die Reduzierbarkeit, und damit die Enzymspezifität, durch seine zyklische Natur und die Annelierung, auch unter Verwendung unterschiedlicher Farb-/Wirkstoffe. Auf dieser Grundlage konnte die molekulare Struktur durch einen weiteren Modifikationspunkt für die flexible Verwendung weiterer funktioneller Einheiten ergänzt werden. Obwohl zelluläre Studien ergaben, dass diese neuartigen 1,2 Dithian Einheiten in Zellen sowohl Trx als auch das strukturell verwandte Grx adressieren, sind die daraus resultierenden diagnostischen Moleküle wertvoll, um den katalytischen Umsatz zellulärer Dithiol-Reduktasen, der sogenannten Trx Superfamilie, selektiv anzuzeigen (Preprint 2023). Begünstigt durch das modulare Moleküldesign stellt diese Arbeit zudem das erste Reportersystem RX1 zum selektiven Nachweis der TrxR-Aktivität in Zellen vor. Es basiert auf der Verwendung eines zyklischen, unsymmetrischen Selenenylsulfid-Sensors (1,2 Thiaselenan), der selektiv von dem einzigartigen Selenolat der TrxR angegriffen wird, und dadurch letztlich nur von TrxR reduziert werden kann. RX1 eignete sich zudem für eine Hochdurchsatz-Validierung bestehender TrxR Inhibitoren und unterstreicht dadurch den kommerziellen Nutzen derartiger Diagnostika (Chem 2022). Das zentrale Trigger-Cargo Konzept dieser Arbeit wurde für therapeutische Zwecke weiterentwickelt und nutzt dabei den einzigartigen Wirkmechanismus der Duocarmycin-Naturstoffklasse (CBI) (JACS Au 2022) zur Entwicklung reduktiv aktivierbarer Therapeutika. CBI Prodrugs basierend auf stabilisierten Redox-Schaltern (1,2 Dithiane für Trx; 1,2 Thiaselenan für TrxR) reagierten signifikant auf TrxR-Modulation in Zellen. Sie wurden darüber hinaus durch das Referenzieren ihrer Aktivität gegenüber nicht-reduzierbaren Kontrollmoleküle für die Erstellung zelllinienabhängiger Profile der Reduktaseaktivität in 177 Zelllinien genutzt. Schließlich waren diese neuen Krebsmittel im Tiermodell gut verträglich und zeigten in zwei verschiedenen Mausmodellen eine krebshemmende Wirkung (Preprint 2022b). Zusammenfassend präsentiert diese Dissertation monothiol-resistente reduzierbare Trigger-Einheiten für das zelluläre Trx-System zur Entwicklung neuartiger, selektiver Reporter-Sonden, sowie eine neue Klasse reduktiv aktivierbarer Krebsmittel auf Basis eines adaptierbaren Trigger-Cargo Designs. Diese fanden entweder zur selektiven Messung zellulärer Proteinaktivität oder zum Einsatz als Antikrebsmittel Verwendung. Es wurden chemokompatible Motive sowohl für TrxR als auch für Trx/Grx identifiziert, wobei deren zyklische Natur eine Aktivierung durch GSH verhindert. Eine weitere Differenzierung zwischen den beiden Redox-Proteinen Trx und Grx und anderen Proteinen der Trx-Superfamilie erfordert eine zusätzliche Ebene der Selektierung, z. B. durch molekulare Erkennung, und ist Gegenstand laufender Arbeiten. Die flexible Verwendung verschiedener molekularer Wirkstoffe ermöglicht dabei die „Pipeline-Entwicklung“ von Diagnostika und Therapeutika, die von der zellulären Redox-Maschinerie analog umgesetzt werden, und dadurch Schlussfolgerungen aus der Diagnostik direkt auf eine Therapie übertragbar machen. Dies birgt großes Potenzial für künftige Entwicklungen bei einer potenziellen Übertragung des modularen Konzepts auf andere Enzymklassen und therapeutische Einsatzgebiete

    [BMIm][BARF] imidazolium salt solutions in alkyl carbonate solvents: Structure and interactions

    Get PDF
    Solutions of weakly coordinating ionic liquids (ILs) in alkyl carbonates are gaining growing attention, as the latter are "green" solvents with high solvation power, but the phase behavior and structure of ILs in organic polar solvents are still poorly understood. Here, we study the interactions and nanoscale structure of 1-butyl-3-methylimidazolium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate, [BMIm][BARF], in three symmetrical alkyl carbonate solvents with increasing alkyl chain-length. Electrical conductivity and nuclear magnetic resonance measurements showed that [BMIm][BARF] was mostly undissociated in these solvents, especially at lower IL concentration. Small angle X-ray scattering patterns evidenced the presence of rod-like nanostructures in the IL/solvent mixtures. At higher IL concentration, [BMIm][BARF] is increasingly more dissociated in solvents with lower dielectric constant, as confirmed by analysis of the solvents' carbonyl stretching band via Fourier transform infrared spectroscopy. This trend is opposite to that exhibited by BMIm ILs with less bulky counterions. The bulky BARF(-) is weakly coordinating and has no ability to give strong H-bonding, thus short-range anisotropic van der Waals forces are likely key in the interaction of the ion pairs. The slower self-diffusion of the ions in alkyl carbonates with lower dielectric constants might partially hinder close contact needed for self-assembly into local nano-sized structures. Overall, our results shed light on interactions and self-organization in imidazolium salt-alkyl carbonate mixtures, with potential impact in applicative fields spanning from batteries, catalysis and extraction, up to bio-applications (antimicrobial and bioengineering)

    Quantum walk in stochastic environment

    Full text link
    We consider a quantized version of the Sinai-Derrida model for "random walk in random environment". The model is defined in terms of a Lindblad master equation. For a ring geometry (a chain with periodic boundary condition) it features a delocalization-transition as the bias in increased beyond a critical value, indicating that the relaxation becomes under-damped. Counter intuitively, the effective disorder is enhanced due to coherent hopping. We analyze in detail this enhancement and its dependence on the model parameters. The non-monotonic dependence of the Lindbladian spectrum on the rate of the coherent transitions is highlighted.Comment: 11 pages, 8 figure

    Improved thermodynamic investigation of asphaltene precipitation

    Get PDF
    Asphaltenes are analogous to the “cholesterol” of crude oils, so they may cause significant flow assurance problems to various oil and gas processes and negatively affect the economy of the oil recovery, transportation, and processing by increasing operational expenditures (OPEX). Asphaltenes increase oil viscosity, decrease its market value, and, when they precipitate, cause flow assurance challenges. Understanding asphaltene precipitation and phase behaviour is important to avoid, prevent, and address asphaltene flow assurance challenges. An experimental investigation is time-consuming and requires laboratory expertise with limitations on how many experiments can reasonably be conducted over what range of feasible operating conditions. Furthermore, we need to predict asphaltene and fluid phase behaviour over the full range of operating conditions to avoid flow assurance issues. Therefore, having a thorough knowledge of the phenomenon and applying asphaltene modeling approaches is essential to foresee conditions leading to asphaltene precipitation to treat the phenomenon properly. Despite significant research, asphaltene behaviour in different operating conditions and the application of improved thermodynamic investigations have not been well understood. There is little research on the investigation of the operating conditions and improvement of the thermodynamic models (e.g., application of advanced optimization technique) on asphaltene precipitation. This thesis uses different modeling approaches (e.g., equation of state) to investigate crude oil asphaltene precipitation at operating conditions. Asphaltene phase separation can be triggered by altering the operating conditions, e.g., temperature, composition, and adding n-alkanes. For instance, decreasing temperature from reservoir conditions leads to asphaltene precipitation due to alteration of the solubility of asphaltene in the oil mixture. Moreover, the composition of crude oil is upgraded or downgraded by adding different hydrocarbons at the refinery inlet. Yet, the prediction of asphaltene precipitation and the impact of operating conditions are quite uncertain, and detailed thermodynamic investigations and appropriate techniques for adjusting the models are required. Several research studies have used thermodynamic equations of state (EoS) to model asphaltene precipitation. Recently, advanced EoSs that take into account the association of hydrogen bonding has become popular. For example, Cubic Plus Association (CPA) has shown promising results in modeling asphaltene precipitation. There is uncertainty in using EoSs, e.g., tuning the adjustable parameters. Hence, there is a need to systematically study how to adjust the tunable parameters to predict asphaltene precipitation using advanced EoS. The objective of this research is to investigate and improve the performance of EoS modeling of asphaltene precipitation. For this purpose, first, a comprehensive literature review was conducted to address asphaltene precipitation from different standpoints. While a comprehensive literature review to study asphaltene precipitation and deposition was missing in the literature, the focus of this research is to provide an overview of the nature and physical properties of asphaltenes, experimental and thermodynamic/simulation tools investigations, operating/fluid/reservoir impact, inhibition/treatment, and economic analysis of flow assurance. The literature review findings highlighted two main gaps in asphaltene thermodynamic modeling; 1) only gradient-based optimization techniques have been used to tune the EoS parameters, and 2) the effect of heteroatoms in asphaltene precipitation has not been considered. Therefore, the two other objectives of this thesis are tailored to address the gaps. In order to address the fact that only gradient-based methods have been used to tune the parameters, we used a global optimization approach instead of gradient-based optimization to relate and correlate hydrogen bonding to the binary interaction parameters of the Cubic Plus Association (CPA) EoS model. While the application of advanced optimization methods and a systematic sensitivity analysis of operational conditions/BIPs were missing in the literature, the focus of this section is to consider the association of hydrogen bonding in asphaltene precipitation while developing correlations for binary interactions (BIs) using global optimization. The advantages of using global optimization are to avoid entrapment in local minima while optimizing the parameters of the EoS and to improve the correlation/prediction capability of the EoS by finding the best fit of the adjustable parameters. The CPA EoS is validated by predicting unseen data, comparing with cubic EoSs, i.e., SRK and PR, using different oil characterization, e.g., SARA analysis, and drawing an analogy between scaling equation and CPA. Application of the proposed technique significantly improved the performance of the CPA EoS in modeling asphaltene precipitation (average deviation of less than 0.067 for correlation and prediction). The relative importance analysis revealed that the composition of the mixture (dilution ratio) is the most influential factor contributing to the asphaltene precipitation (other factors are temperature and carbon number of the diluents). The effect of polar forces due to the presence of heteroatoms on asphaltene phase behaviour is investigated using a Cubic Plus Polar EoS (CPP). To the best of our knowledge, we have not found any literature focused on polar heteroatom forces in asphaltene thermodynamic modeling. In this novel work, we demonstrate how a single term that accounts for polarity can be added to the extension of the cubic EoS and be effectively applied to calculate asphaltene precipitation. Further, a simplified oil characterization method is adapted to reduce the number of adjustable parameters (binary interactions) and reduce the need for experimental measurements. A global optimization approach and molecular dynamic (MD) simulation have also been used to increase the reliability of the optimization and reduce the number of adjustable parameters for polar forces. This section of the research finds that the CPP approach using global optimization to tune parameters of the EoS is the most reliable approach, followed by CPP EoS using MD to find dipole moment for the aryl-linked core asphaltene structure (average R2 for both modes are above 0.98). The improved thermodynamic approaches (global optimization and including the effect of heteroatoms) introduced in this research can be used by other researchers to increase the efficiency of the asphaltene thermodynamic modeling

    Modifying the self-assembled nanostructures of perylene bisimides in water and their applications

    Get PDF
    Perylene bisimide (PBI) performance in photovoltaic applications is highly dependent on their ability to form photogenerated radicals. Their aggregation and self-assembled nanostructures can have a large impact on their ability to form the photoconductive radical. Currently, the literature has been primarily focused on changing their aggregation and self-assembled nanostructures in organic solvents. However, there is a desire to move away from organic solvents and towards water as it is more environmentally friendly. The addition of pH sensitive groups onto the PBI chemical structure allows for them to be solubilised in water. This also allows for their aggregation and self-assembled nanostructures to be tailored through pH change. First, this work looked at how the counterion used to make the basic solution which solubilises the PBI could be used to change the aggregates and molecular packing in solution. This is a simple method and less time consuming compared to changing the PBI chemical structure to form new structures. The different metal ions used to form the PBI aggregates had different pH sensitivities and showed different nanostructures forming over a range of pHs. This also led to a change in the gelation kinetics for pH-triggered hydrogels and a difference in the bulk rheological properties. The solutions of PBI solubilised with different counterions at pH 6 were used to fabricate multilayer photovoltaic devices which showed varying degrees of power conversion efficiency depending on counterion choice. Next, the chemical structure was changed in the imide position with three similar amino acids. These PBIs were then characterised across various length scales to see how their self-assembled structures influenced their ability to form photoconductive radical at different pHs. This difference in molecular packing led to a difference in radical anion formation over a range of pHs. The difference in pH sensitivity led to a difference in the gelation kinetics when a pH trigger was used. It was also observed that the different pH sensitivities led to an increase in gel stiffness for one of the PBIs. Lastly the synthesis of three PBIs with different amino acid side chains that have been core-substituted with pyrrolidine groups were examined. The change in the functional group on the core is expected to change the π-π stacking. The addition of the electron density to the core leads to a dramatic change in the optical and redox properties. The PBIs were able to form radical cation instead of radical anion when irradiated. Their ability to self-assemble as pH was lowered showed that amino acid choice has a major impact on the nanostructures formed. They could be used to make pH-triggered hydrogels when the initial solution concentration was increased, however, these hydrogels could no longer form radical cation

    Synthesis of Quasi-Freestanding Graphene Films Using Radical Species Formed in Cold Plasmas

    Get PDF
    For over a decade, the Stinespring laboratory has investigated scalable, plasma assisted synthesis (PAS) methods for the growth of graphene films on silicon carbide (SiC). These typically utilized CF4-based inductively coupled plasma (ICP) with reactive ion etching (RIE) to selectively etch silicon from the SiC lattice. This yielded a halogenated carbon-rich surface layer which was then annealed to produce the graphene layers. The thickness of the films was controlled by the plasma parameters, and overall, the process was readily scalable to the diameter of the SiC wafer. The PAS process reproducibly yielded two- to three-layer thick graphene films that were highly tethered to the underlying SiC substrate via an intermediate buffer layer. The buffer layer was compositionally similar to graphene. However, a significant number of graphene carbons were covalently bound to silicon atoms in the underlying substrate. This tethering lead to mixing of the film and substrate energy bands which degraded many of graphene’s most desirable electrical properties. The research described in this dissertation was aimed at improving graphene quality by reducing the extent of tethering using a fundamentally different plasma etching mechanism while maintaining scalability. In the ICP-RIE process, the etchant species include F and CFx (x = 1-3) radicals and their corresponding positive ions. These radicals are classified as “cold plasma species” in the sense that they are nominally in thermal equilibrium with the substrate and walls of the system. In contrast, the electrons exist at extremely high temperature (energy), and the ionic species are accelerated to energies on the order of several hundred electron volts by the plasma bias voltage that exists between the plasma and substrate. As a result, the ionic species create a directional, high rate etch that is dominated by physical etching characterized by energy and momentum transfer. In contrast, the neutral radicals chemically etch the surface at a much lower rate. In this work, the effects of physical etching due to high energy ions were eliminated by shielding the SiC substrate using a mask (e.g., quartz) supported by silicon posts. In this way, a microplasma consisting of chemically reactive cold plasma species was created in the small space between the substrate surface and the backside of the quartz mask. This process, referred to here as microplasma assisted synthesis (MPAS), was used to produce graphene films. A parametric investigation was conducted to determine the influence of MPAS operating parameters on graphene quality. The key parameters investigated included ICP power, RIE power, etch time, various mask materials, microreactor height, substrate cooling, initial surface morphology and SiC polytype. The resulting graphene films were characterized by x-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and atomic force microscopy (AFM). Following optimization of the MPAS process, some tethering of the graphene films remained. However, films produced by MPAS consistently exhibited significantly less tethering than those produced using the PAS process. Moreover, both XPS and Raman spectroscopy indicated that these films were quasi-free standing, and, in some cases, they approached free standing graphene. From a wide view, the results of these studies demonstrate the potential of MPAS as a technique for realizing the controlled synthesis of high-quality, lightly tethered mono-, and few-layer graphene films directly on an insulating substrate. On a more fundamental level, the results of these studies provide insight into the surface chemistry of radical species
    • …