167 research outputs found

    Service level agreement framework for differentiated survivability in GMPLS-based IP-over-optical networks

    Get PDF
    In the next generation optical internet, GMPLS based IP-over-optical networks, ISPs will be required to support a wide variety of applications each having their own requirements. These requirements are contracted by means of the SLA. This paper describes a recovery framework that may be included in the SLA contract between ISP and customers in order to provide the required level of survivability. A key concern with such a recovery framework is how to present the different survivability alternatives including recovery techniques, failure scenario and layered integration into a transparent manner for customers. In this paper, two issues are investigated. First, the performance of the recovery framework when applying a proposed mapping procedure as an admission control mechanism in the edge router considering a smart-edge simple-core GMPLS-based IP/WDM network is considered. The second issue pertains to the performance of a pre-allocated restoration and its ability to provide protected connections under different failure scenarios

    Resilient network design: Challenges and future directions

    Get PDF
    This paper highlights the complexity and challenges of providing reliable services in the evolving communications infrastructure. The hurdles in providing end-to-end availability guarantees are discussed and research problems identified. Avenues for overcoming some of the challenges examined are presented. This includes the use of a highly available network spine embedded in a physical network together with efficient crosslayer mapping to offer survivability and differentiation of traffic into classes of resilience. © 2013 Springer Science+Business Media New York

    On QoS-assured degraded provisioning in service-differentiated multi-layer elastic optical networks

    Full text link
    The emergence of new network applications is driving network operators to not only fulfill dynamic bandwidth requirements, but offer various grades of service. Degraded provisioning provides an effective solution to flexibly allocate resources in various dimensions to reduce blocking for differentiated demands when network congestion occurs. In this work, we investigate the novel problem of online degraded provisioning in service-differentiated multi-layer networks with optical elasticity. Quality of Service (QoS) is assured by service-holding-time prolongation and immediate access as soon as the service arrives without set-up delay. We decompose the problem into degraded routing and degraded resource allocation stages, and design polynomial-time algorithms with the enhanced multi-layer architecture to increase the network flexibility in temporal and spectral dimensions. Illustrative results verify that we can achieve significant reduction of network service failures, especially for requests with higher priorities. The results also indicate that degradation in optical layer can increase the network capacity, while the degradation in electric layer provides flexible time-bandwidth exchange.Comment: accepted by IEEE GLOBECOM 201

    Multi-layer survivability in IP-over-WDM networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Crosslayer Survivability in Overlay-IP-WDM Networks

    Get PDF
    As the Internet moves towards a three-layer architecture consisting of overlay networks on top of the IP network layer on top of WDM-based physical networks, incorporating the interaction between and among network layers is crucial for efficient and effective implementation of survivability.This dissertation has four major foci as follows: First, a first-of-its-kind analysis of the impact of overlay network dependency on the lower layer network unveils that backhaul, a link loop that occurs at any two or more lower layers below the layer where traffic is present, could happen. This prompts our proposal of a crosslayer survivable mapping to highlight such challenges and to offer survivability in an efficient backhaul-free way. The results demonstrate that the impact of layer dependency is more severe than initially anticipated making it clear that independent single layer network design is inadequate to assure service guarantees and efficient capacity allocation. Second, a forbidden link matrix is proposed masking part of the network for use in situations where some physical links are reserved exclusively for a designated service, mainly for the context of providing multiple levels of differentiation on the network use and service guarantee. The masking effect is evaluated on metrics using practical approaches in a sample real-world network, showing that both efficiency and practicality can be achieved. Third, matrix-based optimization problem formulations of several crosslayer survivable mappings are presented; examples on the link availability mapping are particularly illustrated. Fourth, survivability strategies for two-layer backbone networks where traffic originates at each layer are investigated. Optimization-based formulations of performing recovery mechanisms at each layer for both layers of traffic are also presented. Numerical results indicate that, in such a wavelength-based optical network, implementing survivability of all traffic at the bottom layer can be a viable solution with significant advantages.This dissertation concludes by identifying a roadmap of potential future work for crosslayer survivability in layered network settings

    Dynamic routing of reliability-differentiated connections in WDM optical networks

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Survivability and Traffic Grooming in WDM Optical Networks

    Get PDF
    The advent of fiber optic transmission systems and wavelength division multiplexing (WDM) have led to a dramatic increase in the usable bandwidth of single fiber systems. This book provides detailed coverage of survivability (dealing with the risk of losing large volumes of traffic data due to a failure of a node or a single fiber span) and traffic grooming (managing the increased complexity of smaller user requests over high capacity data pipes), both of which are key issues in modern optical networks. A framework is developed to deal with these problems in wide-area networks, where the topology used to service various high-bandwidth (but still small in relation to the capacity of the fiber) systems evolves toward making use of a general mesh. Effective solutions, exploiting complex optimization techniques, and heuristic methods are presented to keep network problems tractable. Newer networking technologies and efficient design methodologies are also described.https://lib.dr.iastate.edu/ece_books/1004/thumbnail.jp
    corecore