3 research outputs found

    Packet Loss Rate Differentiation in slotted Optical Packet Switching OCDM/WDM

    Get PDF
    We propose a multi-class mechanism for Optical Code Division Multiplexing (OCDM), Wavelength Division Multiplexing (WDM) Optical Packet Switch (OPS) architecture capable of supporting Quality of Service (QoS) transmission. OCDM/WDM has been proposed as a competitive hybrid switching technology to support the next generation optical Internet. This paper addresses performance issues in the slotted OPS networks and proposed four differentiation schemes to support Quality of Service. In addition, we present a comparison between the proposed schemes as well as, a simulation scheduler design which can be suitable for the core switch node in OPS networks. Using software simulations the performance of our algorithm in terms of losing probability, the packet delay, and scalability is evaluated

    Differentiated Contention Resolution for QoS in Photonic Packet-Switched Networks

    No full text
    In this paper, we propose a framework for providing differentiated contention resolution in photonic packet-switched networks by exploiting recirculation buffering and deflection routing. We develop an analytical model to evaluate the packet loss probability and the end-to-end delay for different buffering and deflection routing schemes, and we investigate the effectiveness of the control schemes in providing differentiated loss and delay. The accuracy of the analytical model is confirmed by simulation

    Differentiated Contention Resolution for QoS in Photonic Packet-Switched Networks

    No full text
    Packet contention is a major challenge in photonic packet-switched networks due to the lack of random access buffers in the optical domain. Existing contention resolution approaches such as wavelength conversion and fiber-delay-line buffering may significantly increase the overall system cost and may be difficult to implement. To avoid such issues, this paper proposes a framework for providing label-based differentiated contention resolution by exploiting recirculation buffering and deflection routing. To accommodate more options for differentiation and to avoid the potential problem of forwarding packets in a network indefinitely, two classes of loopless deflection algorithms are provided. An analytical model is also developed to evaluate the packet loss probability and the end-to-end delay for different buffering and deflection routing schemes. The paper also investigates the effectiveness of the control schemes in providing differentiated loss and delay through simulation and analysis. The accuracy of the analytical model is confirmed by simulation
    corecore