127,131 research outputs found

    Performance comparison of differential space-time signalling schemes for OFDM systems

    Get PDF
    Differential transmit diversity is an attractive alternative to its coherent counterpart, especially for multiple antenna systems where channel estimation is more difficult to attain compared to that of single antenna systems. In this paper we compare two different types of differential transmit diversity techniques for OFDM based transmissions. The first technique uses differential space-time block codes (DSTBC) from orthogonal designs and the second uses the differential cyclic delay diversity (DCDD). The results compare the bit error performance for several transmit antenna configurations. The results show that DCDD offers a very close performance to that of DSTBC, with the advantage of a simplified receiver structure

    Signal Set Design for Full-Diversity Low-Decoding-Complexity Differential Scaled-Unitary STBCs

    Full text link
    The problem of designing high rate, full diversity noncoherent space-time block codes (STBCs) with low encoding and decoding complexity is addressed. First, the notion of gg-group encodable and gg-group decodable linear STBCs is introduced. Then for a known class of rate-1 linear designs, an explicit construction of fully-diverse signal sets that lead to four-group encodable and four-group decodable differential scaled unitary STBCs for any power of two number of antennas is provided. Previous works on differential STBCs either sacrifice decoding complexity for higher rate or sacrifice rate for lower decoding complexity.Comment: 5 pages, 2 figures. To appear in Proceedings of IEEE ISIT 2007, Nice, Franc

    OFDM based Distributed Space Time Coding for Asynchronous Relay Networks

    Full text link
    Recently Li and Xia have proposed a transmission scheme for wireless relay networks based on the Alamouti space time code and orthogonal frequency division multiplexing to combat the effect of timing errors at the relay nodes. This transmission scheme is amazingly simple and achieves a diversity order of two for any number of relays. Motivated by its simplicity, this scheme is extended to a more general transmission scheme that can achieve full cooperative diversity for any number of relays. The conditions on the distributed space time block code (DSTBC) structure that admit its application in the proposed transmission scheme are identified and it is pointed out that the recently proposed full diversity four group decodable DSTBCs from precoded co-ordinate interleaved orthogonal designs and extended Clifford algebras satisfy these conditions. It is then shown how differential encoding at the source can be combined with the proposed transmission scheme to arrive at a new transmission scheme that can achieve full cooperative diversity in asynchronous wireless relay networks with no channel information and also no timing error knowledge at the destination node. Finally, four group decodable distributed differential space time block codes applicable in this new transmission scheme for power of two number of relays are also provided.Comment: 5 pages, 2 figures, to appear in IEEE International Conference on Communications, Beijing, China, May 19-23, 200

    A multigrid perspective on the parallel full approximation scheme in space and time

    Full text link
    For the numerical solution of time-dependent partial differential equations, time-parallel methods have recently shown to provide a promising way to extend prevailing strong-scaling limits of numerical codes. One of the most complex methods in this field is the "Parallel Full Approximation Scheme in Space and Time" (PFASST). PFASST already shows promising results for many use cases and many more is work in progress. However, a solid and reliable mathematical foundation is still missing. We show that under certain assumptions the PFASST algorithm can be conveniently and rigorously described as a multigrid-in-time method. Following this equivalence, first steps towards a comprehensive analysis of PFASST using block-wise local Fourier analysis are taken. The theoretical results are applied to examples of diffusive and advective type

    Differential space time modulation and demodulation for time varying multiple input multiple output channels

    Get PDF
    Over the last decade there has been considerable interest in wireless communication using multiple transmit and receive antennas. Several literatures exists that show that these multiple link support very high data rates with low error probabilities when the channel state information is available at the receiver. However when multiple antennas are employed or when the mobile environments change rapidly, it is not always possible to have apriori knowledge of the channel state matrices which calls for Differential Space-Time modulation techniques. Differential modulation is used in conjunction with Unitary Space-Time codes to evaluate their performance over time varying channels. Jakes model for frequency flat fading processes in mobile radio systems is incorporated with the differential modulation scheme to model a time-varying space-time Rayleigh fading multiple input multiple output (MIMO) radio channel. Parametric unitary codes that are known to have the largest possible diversity product for a 16-signal constellation and a 4-signal constellation with both optimal diversity sum and diversity product is used to evaluate the Block Error Rates for 2 and 5 receiver antennas that are moving at different velocities. A fast differential demodulation for Alamouti codes is derived based on prior work by Liang and Xia and is tested using our simulations. MATLAB R2006b V 7.1 is used to simulate the performance of M=2, N=2 and M=2 N=5 antennas over a time varying channel for velocities of 0, 50, 75, 100 and 125 kmph. We also show that the fast demodulation algorithm is almost twice as fast and also perform within 1dB of existing differential demodulation schemes

    The performance analysis of differential orthogonal space- time block codes

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Energy efficient decision fusion for differential space-time block codes in wireless sensor networks

    Get PDF
    The non-coherent techniques that do not require the channel state information have gained significant interest especially when multiple transmitter and receiver nodes are involved in communication. In this paper, we analyze the energy efficiency of differential and coherent cooperative Multiple-input Multiple-output (MIMO) method using space-time block codes (STBC). We exploit the benefits of the extension of the observation interval of differential STBC to three blocks in Wireless sensor networks (WSNs). We propose an energy efficient decision fusion (EEDF) algorithm in WSNs which utilizes the benefits of Multiple symbol differential detection (MSDD) decision fusion by optimally selecting the ring amplitude of the differential amplitude phase shift keying (DAPSK) constellation. The simulation results show that processing differential multiple symbols provides significant energy saving compared to the conventional two-symbol processing. Furthermore, significant performance gain is achieved for the proposed algorithm compared to 16 DPSK MSDD decision fusions
    corecore