6 research outputs found

    Bi-level optimisation and machine learning in the management of large service-oriented field workforces.

    Get PDF
    The tactical planning problem for members of the service industry with large multi-skilled workforces is an important process that is often underlooked. It sits between the operational plan - which involves the actual allocation of members of the workforce to tasks - and the strategic plan where long term visions are set. An accurate tactical plan can have great benefits to service organisations and this is something we demonstrate in this work. Sitting where it does, it is made up of a mix of forecast and actual data, which can make effectively solving the problem difficult. In members of the service industry with large multi-skilled workforces it can often become a very large problem very quickly, as the number of decisions scale quickly with the number of elements within the plan. In this study, we first update and define the tactical planning problem to fit the process currently undertaken manually in practice. We then identify properties within the problem that identify it as a new candidate for the application of bi-level optimisation techniques. The tactical plan is defined in the context of a pair of leader-follower linked sub-models, which we show to be solvable to produce automated solutions to the tactical plan. We further identify the need for the use of machine learning techniques to effectively find solutions in practical applications, where limited detail is available in the data due to its forecast nature. We develop neural network models to solve this issue and show that they provide more accurate results than the current planners. Finally, we utilise them as a surrogate for the follower in the bi-level framework to provide real world applicable solutions to the tactical planning problem. The models developed in this work have already begun to be deployed in practice and are providing significant impact. This is along with identifying a new application area for bi-level modelling techniques

    Evolutionary Algorithms in Engineering Design Optimization

    Get PDF
    Evolutionary algorithms (EAs) are population-based global optimizers, which, due to their characteristics, have allowed us to solve, in a straightforward way, many real world optimization problems in the last three decades, particularly in engineering fields. Their main advantages are the following: they do not require any requisite to the objective/fitness evaluation function (continuity, derivability, convexity, etc.); they are not limited by the appearance of discrete and/or mixed variables or by the requirement of uncertainty quantification in the search. Moreover, they can deal with more than one objective function simultaneously through the use of evolutionary multi-objective optimization algorithms. This set of advantages, and the continuously increased computing capability of modern computers, has enhanced their application in research and industry. From the application point of view, in this Special Issue, all engineering fields are welcomed, such as aerospace and aeronautical, biomedical, civil, chemical and materials science, electronic and telecommunications, energy and electrical, manufacturing, logistics and transportation, mechanical, naval architecture, reliability, robotics, structural, etc. Within the EA field, the integration of innovative and improvement aspects in the algorithms for solving real world engineering design problems, in the abovementioned application fields, are welcomed and encouraged, such as the following: parallel EAs, surrogate modelling, hybridization with other optimization techniques, multi-objective and many-objective optimization, etc
    corecore