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Abstract 

The tactical planning problem for members of the service industry with large multi-skilled 

workforces is an important process that is often under looked.  It sits between the operational 

plan which involves the actual allocation of members of the workforce to tasks and the strategic 

plan where long term visions are set.  An accurate tactical plan can have great benefits to service 

organisations and this is something we demonstrate in this work.  Sitting where it does it is 

made up of a mix of forecast and actual data which can make solving the problem effectively 

difficult.  In members of the service industry with large multi-skilled workforces it can often 

become a very large problem very quickly as the number of decisions scale quickly with the 

number of elements within the plan. 

In this study we first update and define the tactical planning problem to fit the process currently 

undertaken manually in practice.  We then identify properties within the problem that identify it 

as a new candidate for the application of bi-level optimisation techniques.  The tactical plan is 

defined in the context of a pair of leader-follower linked sub-models which we show can be 

solved to produce automated solutions to the tactical plan.  We further identify the need for the 

use of machine learning techniques to effectively find solutions in practical applications where 

limited detail is available in the data due to its forecast nature.  We develop neural network 

models to solve this issue and show that they provide more accurate results than the current 

planners.  Finally we utilise them as a surrogate for the follower in the bi-level framework to 

provide real world applicable solutions to the tactical planning problem.  The models developed 

in this work have already begun to be deployed in practice and are providing significant impact.  

This is along with identifying a new application area for bi-level modelling techniques. 

 

Key Words: Bi-level, Genetic Algorithm, Machine Learning, Neural Network, Real-world, Large 

Problem, Service Industry  
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Notation List 

Notation Definition 

𝑟 Resource r which is a member of the workforce 

𝑠 Skill required to complete a task.  Resources have skills they can perform and tasks have skills 

required to complete them 

𝑡 Index of a period in the plan – a period being a duration of time e.g. a day so t=0 is today and t=1 

is tomorrow 

𝑎 Area a where an area is a geographical area within which a task may be required or resource 

may be based 

𝑥𝑟𝑎𝑠𝑡 Allocation of capacity from resource r to skill s, in area a in period t 

𝜔𝑟𝑎𝑠 Cost of allocating 1 unit of time from resource r to skill s in area a 

𝑐𝑟𝑡 Total costs associated with resource r in period t 

𝑘𝑗𝑡 Total costs associated with task j in period t 

𝜖𝑟𝑎𝑠  Efficiency of resource r at using skill s in area a 

𝐷𝑠𝑎𝑡 Total time allocated to complete tasks requiring skill s in area a in period t 

𝑥𝑟𝑎𝑠𝑡
′  Allocation of overtime from resource r to skill s in area a and period t 

𝜎𝑟𝑡 Total time available to resource r in period t 

𝜗 Proportion of a resources time available for use as overtime 

𝑉 Cost for use of one time unit of overtime 

𝑔 Resource group which is a collection of resources that can perform the same skills 

𝑔𝑎 Resources from group g that are based in area a 

𝑥𝑔𝑎𝑠𝑡  Allocation of time from resource group g in area a to skill s in period t 

𝜔𝑔𝑠 Cost of allocating a unit of time from resource group g to skill s 
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𝑚𝑔𝑎𝑔
𝑎′𝑡 Movement of time from resource group g in area a to area a’ in period t 

𝑀𝑔𝑎𝑔
𝑎′  Cost of moving a unit of resource group g’s time from area a to area a’ 

𝜎𝑔𝑎𝑡 Total time available to resource group g in area a in period t 

𝑥𝑔𝑎𝑡
′    Overtime added to resource group g in area a in period t 

𝜃 Total amount of overtime available 

𝑖𝑔𝑎𝑡 Intake/recruitment of a new resource to group g in area a in period t 

𝑤𝑔𝑎𝑡 Wastage/reduction of a resource from group g in area a in period t 

𝐼𝑐 Cost of adding a new resource 

𝑊𝑐 Cost of removing a resource 

𝐼 Total number of new resources available to add to the plan 

𝑊 Total number of reductions allowed to the plan 

𝐺𝑔𝑎
′  Set of resource groups that members of resource group g in area a can be trained to move to by 

adding the relevant skill(s) 

𝜏𝑔𝑎𝑔𝑎
′ 𝑡  Training of a member of resource group g in area a to move them to resource group g’ 

𝜈𝑔𝑔′  Cost of training a member of group g to move to group g’ 

𝛲 Total number of training moves allowed within the plan 

𝑦𝑗𝑎𝑡 Allocation of time to complete task of type j in area a in period t 

𝜑𝑗  Cost for not completing a task of type j 

𝜌𝑗𝑎𝑡 Total time required for tasks of type j in area a in period t 

𝑑𝑗𝑎𝑡 Decision to delay tasks of type j in area a in period t to the next period 

𝑒𝑗𝑎𝑡 Decision to do tasks of type j in area a in period t a period early 

𝛿𝑗  Cost to delay time of task type j 
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𝜂𝑗 Cost to do time required by tasks type j early 

𝑓𝑗𝑎𝑡 Boolean indicating failure of the service level agreement for task type j in area in period t, where 

the SLA indicates that a percentage of tasks must be completed within a certain time of being 

due 

𝐹𝑗𝑎𝑡 Cost associated with failing the SLA for task type j in area a in period t 

𝐿𝑗 Proportion of task type j that must be completed within the time defined by the SLA 

𝑙𝑗 Number of days defined in the SLA that a task of type j is allowed to be late 
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Chapter 1 

Introduction 

In recent decades, with the advent of privatisation and the increase in competition, there has been 

a drive in the service operations sector to improve the sophistication of supporting applications 

up to the level of the far more mature supply sector (Voudouris, 2008).  Although similarities exist 

between the fields, which has directed some of the early developments, it has been found that 

differences are significant enough to prevent the wholesale utilisation of current supply chain 

management solutions within the service sector.  Both essentially involve getting resoures to the 

right place to cover expected demand, however in the service chain these are often people and 

thus there can be no stockpiling utilised to provide any buffer against variations.  Within the 

service industry waiting times are also paramount, with many situations where customers expect 

a near immediate response (e.g. calls to a call centre or repairs to a vital service).  

Along with the requirement for a quality forecast to correctly anticipate future requirements, this 

also relies on accurate planning to ensure that there is adequate resourcing available at all times 

to cover the expected levels of demand.  Research shows that there is a current drive to improve 

outcomes through the introduction of automation into this service chain planning process. 

(Owusu & O'Brien, 2013) 

In the remainder of this section we will define the overall service chain planning process described 

in the literature before highlighting a specific level of that process that contains the problem that 

is the motivation for this thesis.  This will be followed by a brief statement of the impacts already 

achieved as outcomes of this research, including both publications and through being used in real 

world applications within the industrial partner.  This chapter then ends with the definition of the 

outline for the remainder of this work. 
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1.1 Service Chain Planning 

 

Fig. 1 Service Chain Planning Hierarchy 

 

 

The current service chain planning model initially evolved from supply chain planning as early work 

attempted to draw on the similarities between the two processes (Schmidt & Wilhelm, 2000).  

Both contain three planning stages, strategic, tactical and operational, with the planning horizon 

reducing while the level of detail increases as it descends through the levels (see Fig 1.).  Within 

the service chain planning field these levels are roughly defined as: 

 Strategic Planning – Performed for the next 12-18 months. Takes unconstrained demand 

forecasts for products and services and decides, based on financial constraints and 

business targets, how much capacity to make available to complete a target portion of 

that demand.  This produces an output that is a constrained capacity and demand profile 

used in the next planning stage (Owusu, et al., 2008). 

 Tactical Planning – Undertaken for the next 1-3 months.  Breaks down the constrained 

demand from the strategic plan into more fine grained detail, splitting it by activity, 

geographical area and time period (e.g. daily instead of weekly/monthly).  At this level the 

demand and capacity are a mixture of forecast and known data. This finer grained demand 

is matched against capacity to identify any more local shortfalls or surpluses.  Actions are 

Strategic
•12-18 Months

•Decides demand 
target based on 
forecast

•Sets capacity levels

Tactical

•1-3 Months

•Rough allocation to 
check for local 
shortfalls

•Balance available 
capacity across areas

Operational
•1-7 days

•Specific allocation of 
tasks to resources

•Generates work 
Schedule
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then taken to attempt to find a greater balance, such as by moving resources between 

skills or areas, to ensure that on the day there is enough capacity to cover demand.  The 

outputs of this process are the finer grained capacity deployment input to the operational 

plan and the expected demand levels that can be covered sent to the reservation system 

to open bookings (Kern & Owusu, 2008). 

 Operational Planning – Covers a window of 1-7 days.  Allocates the resources that have 

been made available in specific geographies and skills to jobs, from customer orders to 

planned work, in an optimal manner. The aim of this process being to allocate the right 

job to the right resource at the right time to improve customer satisfaction, increase 

efficiency and provide robustness (Liret & Dorne, 2008). 

Of these stages the tactical plan is often overlooked despite it being an important process to help 

ensure good customer service levels (Shakya, et al., 2013).  As such it is this stage that will be the 

focus of this thesis.   

There is however a lack of consensus in the literature about precisely what falls into this level.  In 

(Mohamed, et al., 2012) and (Mohamed, et al., 2013) tactical planning is defined as the matching 

of capacity to demand across skills and areas as above, however the scope is only for the next 

couple of days.  It also predominantly deals with known data rather than forecast, involving the 

matching of actual resources to actual tasks.  As such it is closer to an operational plan than a 

traditional tactical plan. In (Kassem, et al., 2012) the boundary between tactical planning and 

operational planning (what they call scheduling) is better defined with the definitions more closely 

matching the early literature.  However there are also some cases where the blurring occurs in 

the other direction, between the strategic and the tactical layers.  For example, (Ross, 2017) 

defines a new aggregate planning layer sitting between tactical and operational over the horizon 

of around 90 days.  Individual workers are aggregated into groups with the same skill loadout and 

the time from each bucket is allocated to task completions based on the group’s 

efficiency/preference for each skill to identify surpluses or shortfalls in capacity vs demand.  This 

actually is very close to the traditional tactical planning process.  The tactical plan in their view 

however covers a longer period than standard, 12 – 18 months, and contains some of the strategic 

level capacity decisions.  The inclusion of capacity decisions does match what can be seen within 

real world planning applications however the time horizon is still that of the traditional tactical 

plan (Kern, et al., 2009).   The reason for the inclusion in practice is that a lot of capacity flexing 

decisions, such as overtime, can be actioned closer to the day so the decision can be delayed to 

take advantage of the identification of shortfalls coming out of the traditional tactical planning 
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process.  This all leads to the updated definition of the tactical plan defined in section 1.2 that is 

the focus of the work for the rest of this thesis. 

1.2 The Tactical Planning Problem 

In a member of the service industry with a large multi-skilled workforce the tactical planning 

process consists of optimising a plan with two main components, the capacity and the demand.   

The capacity for the plan is made up of the members of the workforce available on each period of 

the plan, called the resources. Each resource has a number of different skills they can perform as 

well as an amount of available time in each period of the plan.  At the tactical planning level these 

are most often used at an aggregated level.  This means a specific resource would actually be an 

aggregation of all individual members of the workforce with the same skill set.  Additionally, for 

the purposes of this thesis a plan period is defined as a day. 

The demand portion of the plan consists of the jobs that are to be completed.  Similarly to the 

capacity, the jobs are aggregated for the purposes of the tactical plan.  They are grouped by the 

skill required to complete them into workstacks.  In the tactical plan there are generally two 

different types of workstacks, those where the planner has no control over the number of jobs 

needing completed and those where the planner does have some control.  An example of the 

former type involves repairing of faults where the number of new jobs added is set by the future 

forecast of the levels of faults expected.  The latter type is one where the planner can set the 

number of jobs available, such as setting the number of appointments to make available for 

deliveries, a new connection, etc.  For the rest of this thesis to give clarity these will be defined 

using the telecoms nomenclature, where the former shall be referred to as faults and the latter 

as installation.  Other service industries may use slightly different terminology however the 

underlying definitions are the same. 

The fault workstacks consist of the number of jobs waiting to be completed (backlog), the number 

of new jobs expected to appear each day of the plan (intake) and the target number to complete 

each day.  In the majority of situations, the target is not to clear the entire backlog, as this may be 

economically infeasible and may not even be possible (e.g. if the fault job is within a property it 

will only be possible to complete it when access is available).  The target is more usually to 

complete a certain percentage of the current backlog.  That percentage target is set, often 

dynamically for different days of the plan, to ensure target levels of service are met.  A service 

level target being to successfully repair a certain percentage of faults within a set time period of 

them being reported. 
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The installation workstacks do not contain a backlog nor an intake, instead the planner sets the 

number of jobs to make available each day of the plan.  This provides the plan output to the 

reservation system that opens up appointments for customers to book.  There is no guarantee 

that all appointments will be picked up, thus planners will usually adjust these values each new 

day as the current levels of uptake are updated. 

Both workstack types share a minimum number of jobs requiring completion on each day, these 

are jobs that have already been appointed such as an installation job that a customer has already 

booked or fault tasks that have been appointed where property access is required. 

The task of the planner, and the definition of the tactical planning problem, is to match the 

capacity to the demand in such a way that the demand targets are met as closely as possible.  This 

is a two-part process; the first part is in optimally assigning the resources to jobs based on their 

available time and the skills they can perform, called the capacity-demand matching process; the 

second part is the attempt to bridge the gap between the capacity and the demand through the 

use of various levers. 

Fig. 2 shows the levers available to the tactical planner.  The demand lever mentioned earlier is to 

decide the number of installation jobs to make available for booking, this modifies the demand 

profile entering the capacity-demand matching phase.  The productivity lever defines the amount 

of time it takes a resource to complete a job requiring a given skill.  This is used to model planned 

efficiency improvements or to allow the planner to estimate potential variations in output levels.  

This is directly input into the capacity-demand matching as it sets how an amount of resource time 

translates into a job completion for each skill.  The remaining levers all relate to the capacity and 

will modify the amount of resource available for the capacity-demand matching process.  These 

capacity levers are: 

 Recruitment/Reductions – The moving of resources in or out of the plan, this could be 

through movements such as from or to other parts of the business or recruiting from 

outside.  

 Training – The training of resources in new skills to increase the number of job types they 

are able to cover. 

 Loans – the temporary movement of resources between areas or parts of the business 

 Overtime – Additional time added to a resources day, or bringing a resource in on a day 

they are rostered off.  This lever is effected by the recruitment/reductions, training, and 
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loans levers in that they change the number of resources available which will modify the 

maximum constraint on the value for the overtime lever. 

 Shrinkage – This models the expected absence of resources, whether unplanned through 

illness or planned through training, meetings, etc. 

 Contractors – The deployment of external resource to increase capacity.  This is usually 

attached to just a single skill and will just be directly deducted from the demand required 

for each skill contractors are attached to during the capacity-demand matching phase. 

For the purpose of the problem explored in this thesis we are taking the productivity and shrinkage 

levers as fixed, using forecast values rather than opening them up as a planning decision.  This is 

done because they are not usually something the planner has much practical control over.  For 

example, a plan may dictate the completion of 10 jobs requiring a specific skill per hour, but the 

actual amount that will be completed are more dependent on the reality of the situation.  A 

further point to note is that recruitment/reductions, training and loans all effectively are 

modelling resource movements.  Recruitment/reductions models movement in and out of the 

business unit, training models movements of an amount of resource to another resource type 

with a different skill set, and loans model moving resource to another area.  This can mean that 

these levers can often be combined for the purpose of model building. 

The outputs from the planning process are the values for these levers along with the number of 

jobs of each type to be completed by each resource on each day of the plan.  
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Fig. 2  Tactical planning decision levers 

 

1.3 Case Study 

For the purposes of this thesis some real planning data is utilised from a telecoms company with 

a large multi-skilled workforce.  The data was obtained for 6 months in 2017 to provide real world 

evaluation of the models produced. 6 months was gathered to give some historical data when 

required.  This is commercially sensitive data and thus is presented in anonymised form wherever 

it appears within this thesis. The data contains 52 different planning areas.  The total number of 

resources number greater than 10000 and are spread across the 52 geographies.  The total 

number of skills defined in the data are 13 - 6 fault skills and 7 installation skills.  Three of those 

installation skills were able to field contractors.  Within the data we have values for all the planning 

variables outlined in section 1.2 as well as some additional data on the achieved success rate for 

tasks.  This data is utilised throughout the thesis and provides a motivation for the attempts to 

develop the models capable of handling the large scale real world data. 

1.4 Research Aims 

This work aims to investigate the complex problem that is the underrepresented tactical planning 

layer of the service chain planning process.  In section 1.1 it has been identified that the tactical 
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planning process defined in the literature does not exactly match that which is undertaken in 

practice and often is not even undertaken at all.  This led to the updated definition provided in 

section 1.2.  This research will explore this real world problem, initially defining it to effectively 

capture all of its features.  Then methods are investigated to effectively solve it.  During this work, 

real world considerations add further complexity, with computational time constraints as well as 

imperfect data. Ultimately we intend to show that undertaking this tactical planning process, more 

specifically by solving the problem effectively, has real world benefits for a member of the service 

industry.  The research in the remainder of this thesis is driven by the questions picked out in 1.4.1 

and guided by the objectives defined in 1.4.2. 

1.4.1 Research Questions 

(RQ1) What is an effective method of optimising a complex tactical planning situation 

within a service industry, such as a telecoms company, where there are a number of 

competing objectives and solution time is an additional objective? 

(RQ2) How can we produce feasible real world solutions in typical situations where not 

all data-points are available in the required level of detail?  

1.4.2 Research Objectives 

To answer the questions posed in 1.4.1 this thesis has the following objectives.  These objectives 

are shaped by the hypothesis that the complex tactical planning problem may be broken down 

into sub-problems that can be solved as linked problems.  

(O1) Develop an initial formulation for the tactical planning problem to capture the key 

features 

(O2) Determine if this could be modelled as a combination of linked sub-problems to 

improve solution time 

(O3) Investigate suitable algorithms to solve these sub-problems 

(O4) Develop a suitable framework to optimise the linked sub-problems 

(O5) Investigate potential solutions to deal with the real world situations where not all 

data-points are available  

(O6) Determine if these can be used within the linked optimisation framework to 

produce feasible solutions to the planning problem in real world scenarios  

Here O1 to O4 are intended to answer RQ1 by creating a linked sub-problem model to solve the 

complex tactical planning problem.  RQ2 will then be addressed by O5 and O6 as we aim to 

develop a real world ready model to utilise the linked sub-problem framework.  It should be noted 
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that O6 will also partly cover the solution time portion of RQ1 as a feasible real world solution to 

the planning problem will include the answer coming in a timely fashion.  

 

1.5 Current Research Outcomes and Thesis Outline 

During the course of this work various papers have been produced.  As such some of the work 

seen in this thesis has appeared in the following publications: 

 (Chapter 4)  Ainslie, R.T., Shakya, S., McCall, J. and Owusu, G., 2015, December. Optimising 

Skill Matching in the Service Industry for Large Multi-Skilled Workforces. In International 

Conference on Innovative Techniques and Applications of Artificial Intelligence (pp. 231-

243). Springer, Cham. 

 (Chapter 5) Ainslie, R., McCall, J., Shakya, S. and Owusu, G., 2018, July. Tactical Plan 

Optimisation for Large Multi-Skilled Workforces using a Bi-Level Model. In 2018 IEEE 

Congress on Evolutionary Computation (CEC) (pp. 1-8). IEEE. 

 (Chapter 6) Ainslie, R., McCall, J., Shakya, S. and Owusu, G., 2016, July. Predictive planning 

with neural networks. In 2016 International Joint Conference on Neural Networks (IJCNN) 

(pp. 2110-2117). IEEE. 

 (Chapter 7) Ainslie, R., McCall, J., Shakya, S. and Owusu, G., 2017, December. Predicting 

Service Levels Using Neural Networks. In International Conference on Innovative 

Techniques and Applications of Artificial Intelligence (pp. 411-416). Springer, Cham. 

Some portions of this work have also already been deployed as practical solutions within the 

industrial partner.  The outcome from chapter 6, the predictive planning model, has been 

deployed as a core component of a next generation tactical planning application that is used daily 

across the entirety of the UK.  The service level prediction model created in chapter 7 is also being 

utilised to give a future view of potential service level impacting issues allowing decisions to rectify 

this to be taken ahead of time.  The deployment of both of these have already had demonstrable 

impacts in performance that will be covered in chapter 9 

The remainder of the thesis is arranged as follows.  In chapter 2 we pick out bi-level modelling as 

a method to define our linked problems and identify one of those sub-problems as having features 

similar to allocation problems in the literature. These two fields are thus the focus of the literature 

review undertaken in this chapter.  This is followed by defining the tactical planning problem 

mathematically to formalise all of the decision variables and constraints in chapter 3. Methods to 
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solve the allocation sub problem are investigated in chapter 4 where we test a genetic algorithm 

vs. a linear solver as well as a standard planning algorithm from the literature.  Chapter 5 we then 

utilise the linear model developed for the allocation sub-problem to create a linked bi-level model 

with a GA leader and linear follower to apply to the tactical planning problem.  In chapter 6 we 

start to investigate methods to cope with real world scenarios where there may be incomplete 

data by developing a neural network model to solve the allocation problem.  Chapter 7 we 

continue this work with real world scenarios to build a further NN that predicts expected success 

rates for tasks to allow evaluation of plan decisions.  Finally we bring the work together by 

developing a surrogate follower model for the bi-level framework using the neural network 

models designed to handle real world scenarios in chapter 8.  We then conclude the thesis and 

define future work in chapter 9.  
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Chapter 2 

Literature Review  

An initial search of the literature at the onset of this work was unable to uncover any precise 

match for the tactical planning problem defined in section 1.2.  However, taking just the capacity-

demand matching sub-problem, whereby only the capacity allocation and the task completion 

decision variables are considered, and comparing that to the literature it can be seen that it has 

elements of an assignment problem (Pentico, 2007).  Sometimes, despite the same root 

mathematical formulations, when dealing with people these are also referred to as human 

resource assignment problems (Bouajaja & Dridi, 2017).   More specifically this sub-problem is 

similar to a hybrid of the generalized assignment problem (GAP), where multiple tasks are 

assigned to agents and each agent has a capacity constraint (Cattrysse & Van Wassenhove, 1992), 

and the -assignment problem, where not every agent has the skills/qualification to complete 

every task but agents are not limited by capacity (Chang & Ho, 1998).  This similarity to GAP is to 

be expected as the capacity-demand matching problem has elements of a scheduling problem 

which is often modelled as a GAP in the literature (Cattrysse & Van Wassenhove, 1992). 

The remaining elements of the tactical planning problem not covered by the capacity-demand 

matching sub problem are the decisions that modify the quantity of available capacity (e.g. 

application of overtime).  Thus the overall tactical planning problem can be modelled as a 

combination of linked problems where the decision variables for the new problem are setting the 

capacity constraints that limit the solution space of the capacity-demand matching problem.  

Within the literature this closely resembles a bi level model.  A bi-level optimisation problem being 

a class of problem that contains two optimisation models, one nested inside the other.  The outer 

or higher level problem is often referred to as the leader, whereby the inner or lower level 

problem is designated the follower (Bard, 2013).  Both models have their own decision variables, 

objectives and constraints and are linked through some (or all) of the leaders decision variables 

acting as parameters for the follower.  In this case the leader decisions act as the constraints for 

the follower. 

This chapter thus focuses on these fields, GAP and Bi-level problems, that are the focus of research 

for the remainder of this thesis.  In section 2.1 the GAP literature is explored followed by that of 
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bi-level problems in section 2.2. Section 2.3 then concludes with a summary of the findings from 

the literature and identifies the areas for research covered in the remainder of this work. 

2.1 Generalized Assignment Problems (GAP) 

Assignment problems (AP) are a class of problems first introduced in Kuhn’s 1955 work published 

on the Hungarian method for their solution (Kuhn, 1955), as such they are quite a mature field.  

An AP is a problem where n agents are matched with n tasks.  Each agent and task are matched in 

a 1-1 manner with the optimal solution being that which minimises the cost of these allocations.   

The mathematical formulation for this problem is shown in equation (1).  Here xij = 1 denotes the 

allocation of task j to agent i, with cij being the related cost for that allocation, and xij = 0 meaning 

the task is not allocated to that agent. 

𝑚𝑖𝑛: ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 (1) 

Such that: 

I. ∑ 𝑥𝑖𝑗
𝑛
𝑖=1 = 1 ∀ 𝑗 

II. ∑ 𝑥𝑖𝑗 = 1 ∀ 𝑖𝑛
𝑗=1  

III. 𝑥𝑖𝑗 ∈ 0, 1 

Many variations to this base problem have appeared over the years.  Some by adding additional 

constraints, such as in the k-cardinality assignment problem where only k of the tasks can be 

assigned to agents and k is less than n (Dell'Amico & Martello, 1997).  Another example appears 

in (Caron, et al., 1999) where constraints were added to limit which tasks can be performed by 

which agent.  Some other variations explored have been to the objectives.  In the bottleneck 

assignment problem (Ravindran & Ramaswami, 1977) the objective is to minimise the maximum 

cost of all the assignments instead of the sum.  This models situations where the problem is to 

minimise the time it takes all tasks to complete rather than the overall cost.  Other variations to 

the objective are seen in the balanced assignment problem (Martello, et al., 1984), and the k 

assignment problem (Grygiel, 1981). In the former, the goal is to minimise the distance between 

the maximum and minimum assignment cost value, in the latter the goal being to minimise the 

sum of the k largest assignment costs. 

However, the variation to the AP that most fits a portion of the tactical planning problem outlined 

in 1.2, namely the sub problem relating to the matching of capacity to demand, are those that 

involve a one-many allocation rather than the one-one of the base AP.  This more closely fits with 
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the capacity demand allocation portion of the tactical planning problem where each of the 

resources are allocated to multiple different jobs. The base version of this modification is called 

the Generalized Assignment Problem (GAP) with an early description in (Ross & Soland, 1975).  In 

a GAP each task is still assigned to just one agent, however each agent can be allocated multiple 

tasks.  These agents each have a total available capacity and each task an amount of capacity 

required for completion.  This updated formulation can be seen in equation (2) below.  Now there 

are m agents and n tasks with xij = 1 still denoting the allocation of agent i to task j, 0 meaning not 

allocated and cij the associated cost.   Each agent now also has a total available capacity of bi and 

each bij indicates how much capacity agent i would use if allocated to task j. Constraint one limits 

each task to being allocated to just one agent and constraint two states the total capacity used by 

tasks assigned to an agent cannot exceed the capacity available to that agent. 

𝑚𝑖𝑛: ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

 (2) 

Such that: 

I. ∑ 𝑥𝑖𝑗
𝑚
𝑖=1 = 1 ∀ 𝑗 

II. ∑ 𝑎𝑖𝑗𝑥𝑖𝑗 ≤ 𝑏𝑖 ∀ 𝑖𝑚
𝑖=1  

III. 𝑥𝑖𝑗 ∈ 0, 1 

The GAP is a combinatorial problem that has been shown to be NP-hard, thus solving large 

problems, such as the tactical planning problem, is generally not feasible using exact methods, 

requiring the application of heuristic approaches (Sahni & Gonzalez, 1976). Even finding just a 

feasible solution has been shown to be NP-complete showing the problems scaling issues (Fisher 

& Jaikumar, 1981).  Despite that the GAP has been widely applied in the literature in a number of 

various areas. The principal concern for work in the field of GAPs during their application being 

the development of heuristic solutions to solve the NP-hard problem when problem sizes become 

too large for exact methods.  

The remainder of this section explores the various applications of the GAP already explored and 

the different methods that have been applied to solve it.  The section then concludes with a brief 

discussion of the current status of the GAP research and how that relates to the tactical planning 

problem explored in the remainder of this thesis. 
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2.1.1. GAP Applications 

Many different application areas have been found where the GAP formulation can be applied.  

Some applications are in the field of network optimisation, in papers such as (Barbas & Marin, 

2004) where the goal is to assign terminals to base stations to achieve optimal coverage or in 

(Bressoud, et al., 2003) which is using a GAP to optimise traffic routing through a network.  Similar, 

yet more physical, versions of these applications can be found in transportation problems such as 

(Fisher & Jaikumar, 1981) where a GAP formulation was used to set the seed positions for a 

transportation network. Alternately GAP has been used to model the mix and size of the fleet used 

in a transportation problem (Golden, et al., 1984).  Finally for transport, a GAP based approach 

can even been used to allocate passengers to flights such as for transporting patients in (Ruland, 

1999).  

The GAP has also been applied in many situations where the goal is the optimal setting or selection 

of locations for various elements.  Once example being the optimal placement of public facilities 

solved in (Ross & Soland, 1980) where the objective is the minimal selection of sites such that each 

client can be served by one facility.  Other location problems solved include the single source 

capacitated facility problem which is an extension whereby the capacity of the facility is also 

considered (Ahuja, et al., 2004) and the capacitated concentrator location problem whereby the 

goal is the placement of concentrated supply points such as distribution centres (Gouveia & 

Saldanha-da-Gama, 2006). 

It has also been applied to many problems within production planning, such as machine 

assignment (Cheng, et al., 1996), storage layout (Lee, 1992), facility location (Ross & Soland, 1977), 

multi-period order selection (Lee & Kim, 1998) and batch loading and scheduling (Dobson & 

Nambimadom, 2001). 

Some further application examples are also in the field of regional planning to optimise land use 

(Cromley & Hanink, 1999) or to minimise energy dissipation through the optimal allocation of tasks 

to processing elements (Yu & Prasanna, 2003).  A GAP has also been used to optimally allocate 

distributed computing resources, such as database partitions to processors and processors to 

users in (Pirkul, 1986). 

Some applications of GAPs in an area closer to the problem explored in this thesis are in the field 

of Supply Chain planning.  Problems such as demand allocation seen in (Benjaafar, et al., 2004), 

where products are the tasks which are allocated to suppliers who are the agents with the goal to 

find the minimum cost allocation such that each product is coming from only one supplier and 
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their capacities are not broken.  Another stage in the chain, where customers are allocated to 

warehouses in a similar manner, can also be modelled as a GAP (Freling, et al., 2003).  Optimising 

resource supply decisions has also been implemented as a GAP in (Higgins, 1999).  However, as 

mentioned in chapter 1, although supply chain planning is somewhat analogous to service chain 

planning there are enough differences that current solutions do not directly translate. 

An area GAP has been applied to in the literature that does resemble portions of the tactical 

planning problem, more specifically the capacity-demand allocation sub-problem, is scheduling.  

Scheduling problems are often modelled as a GAP in the literature (Cattrysse & Van Wassenhove, 

1992), covering a wide range of fields.  Applications such as in (Harvey, et al., 2006) to model a 

machine time allocation problem or for job assignment in (Drexl, 1991) or in (Nowakovski, et al., 

1999) for scheduling the use of a space telescope.    

Closer to resource allocation is in (Campbell, 1999)  and (Campbell & Diaby, 2002) where shift 

allocation is modelled as a GAP to allocate workers to departments.  For a given day multi skilled 

workers are allocated taking account of the demand levels in each department for that day and 

their capabilities with each skill.  The goals being the maximisation of service and the satisfaction 

of the workers themselves.  A specific example of its use is stated as the allocation of nurses to 

departments within healthcare.   

 

2.1.2. GAP Solution Methods 

A wide range of techniques have been applied to solve various different GAP formulations across 

the literature, from approximation methods through constraint relaxations and heuristics to exact 

methods. 

Polynomial time approximation methods such as rounding based and local search algorithms have 

been used to solve a bin packing problem with bin capacities and variable benefits for adding items 

to different bins and a more specific practical application to distributed caching decisions in 

(Fleischer, et al., 2006).  There are also approximation algorithms that take given solution costs or 

other objective values and return a solution, if there is a feasible solution, with that objective value 

or better. One such is applied to solve problems such as the machine allocation problem in 

(Shmoys & Tardos, 1993). 

Greedy hill climber style algorithms, such as (Martello & Toth, 1981) where they allocate items to 

a knapsack one at a time.  Each time it chooses the one with the biggest gap between the best 
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and second best allocation location based on cost change of the solution.  The GAP can also been 

remodelled as a set partitioning problem through the use of a column generation heuristic 

(Cattrysse, et al., 1994). 

Various relaxation methods can also be deployed. A common example is linear programming 

relaxation, where specific constraints are removed to reduce the problem complexity. Some repair 

then occurs afterwards, such as applying a hill climber, to fix any of the constraints that are not 

being met in the relaxed solution (Wilson, 1997).  Alternately a heuristic has been applied to 

allocate the split jobs to specific agents when an integer constraint has been relaxed (Benders & 

Van Nunen, 1983).  This technique has also been expanded through the addition of a heuristic that 

removes the redundant variables one by one to create the linear relaxation (Trick, 1992). 

Lagrangian relaxation and decomposition are two other relaxation style techniques. In the former 

some of the more difficult to handle constraints are removed and instead placed within the 

objective function and in the latter the problem is split into sub problems each containing a 

portion of the constraints (V, 2009).  Lagrangian relaxation has been shown to be applicable to the 

GAP in work such as that by Fisher (Fisher, 1981) (Fisher, 2004), the main methods being by 

relaxing the capacity (Ross & Soland, 1975) or the semi-assignment constraints (Fisher, et al., 

1986). Whereby examples of uses of the decomposition technique can be found in (Jörnsten & 

Näsberg, 1986) and (Barcia & Jörnsten, 1990). 

These techniques have also been combined with heuristic algorithms to provide approximate 

solutions to more complex problems such as solving a capacity constraint relaxation using a sub-

gradient heuristic in (Lorena & Narciso, 1996)  or applying a two stage heuristic to a Lagrangian 

decomposition of the problem through the substitution of specific variables in (Haddadi, 1999). 

Many standard metaheuristics have also been utilised to solve the GAP, such as: 

 Tabu search in (Dıaz & Fernández, 2001).  Also enhanced versions including improvements 

through the use of an ejection chain to add potential compound moves to the search in 

(Yagiura, et al., 2004) or the further addition of path-relinking in (Yagiura, et al., 2006). 

 Simulated annealing in (Osman, 1995). 

 Genetic algorithms in (Chu & Beasley, 1997).  Including taking a constructive approach in 

(Lorena, et al., 1999). 

 Greedy random heuristic in (Lourenço & Serra, 1998). 

 Ant colony optimisation is also applied in (Lourenço & Serra, 1998).  

 Variable depth search heuristics (Racer & Amini, 1994) (Yagiura, et al., 1999). 
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Finally exact procedures have also been used, such as branch and bound (Haddadi & Ouzia, 2004) 

and branch and cut algorithms (Pigatti, et al., 2005) though given the np-hard nature of GAP 

problems these are only applicable in cases where the specific GAP is not overly large.    

None of the above were used in tackling particularly large problem sizes, at least not whilst also 

focussing on quick solution times.  Some more recent work on GAP has been focussed on this area 

however with one example exploiting the potential parallelisation of some GA operations and 

evaluations to distribute the processing during the optimisation of a GAP across multiple 

processors (Liu & Wang, 2015). 

2.1.3 GAP Discussion 

It is clear from the literature that GAP is quite a mature field, having first arisen around 1975 as a 

special case of the assignment problem that had appeared in the literature about 20 years earlier.  

A vast range of solution techniques have been utilised to solve this problem ranging from exact 

methods through to heuristics and metaheuristics.  As such it can be concluded that solution 

methods for the GAP are already well covered within the research making them a strong tool to 

apply to practical problems where they are applicable.   

On the application side the GAP has been used in a wide range of fields over the years from 

allocation of physical resources such as base stations, through the placement of facilities and 

production planning to the more relevant applications in actual human resource allocations in 

scheduling problems.  Although some problems covered are close to the demand-allocation sub 

problem of the tactical planning problem there isn’t anything in the literature that could be found 

that falls within the tactical planning level of the service chain plan.  The closest that could be 

found was either within the fields of supply chain planning or scheduling within the service chain 

plan.  Thus the GAP shows promise in potentially being applicable to a sub-problem of the tactical 

plan whilst also being a novel new application for this approach.      

2.2 Bi-level Optimisation Problems 

A bi-level optimisation problem is a class of problem containing two linked optimisation models, 

one nested inside the other.  The outer, or upper, problem is commonly referred to as the leader 

where the inner, or lower, problem is called the follower.  Each level has their own decision 

variables, objective function and constraints.  The leader’s decision variables defined as x in 

decision space X, and the followers as y in decision space Y.  The objective functions are then F(x, 

y) for the leader with constraints G(x, y).  The followers corresponding components being f(x, y) 
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for the objective function with g(x, y) for the constraints.  The resulting linked problem can be 

seen in equation (3) (Bard, 2013).   

min
𝑥∈𝑋

𝐹(𝑥, 𝑦) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝐺(𝑥, 𝑦) ≤ 0                            (3) 

min
𝑦∈𝑌

𝑓(𝑥, 𝑦) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔(𝑥, 𝑦)  ≤ 0 

 

When searching for an optimal solution the leader first sets the values for x to attempt to minimise 

its objective function F.  The follower now sets the values for y, given the now known values for x, 

to minimise its own objective function f(x y) subject to constraints g(x, y).  These set values for y 

are now used to complete the calculation for the leader’s objective function which gives the 

current objective value for the currently selected values for x as well as whether these combined 

with y meet the constraints G(x, y).  The leader may then select different values for x and the 

process continues till the leader has minimised its objective function value.  

Some additional complexity arises when, given a leader decision vector of x, there is more than 

one option for y that will minimise the lower level objective function f(x, y).  This leads to two 

possible bi-level systems.  One where the follower cooperates with the leader, in that given 

multiple options for y it will select the values that also minimises the leader fitness function.  This 

is defined in the literature as an optimistic position (Dempe, 2002).  The alternative is found when 

in that scenario the follower is non-cooperative, in that it could select any of the options for y that 

optimise the followers objective function f(x, y) but not necessarily the leaders function F(x, y).  In 

this case the leader optimises for the worst case, where the y selected maximises F(x, y) while 

minimising f(x, y).  This leads to this system being defined as a pessimistic position in the literature 

(Wiesemann, et al., 2013).  The optimistic position is generally easier to handle and guarantees 

the existence of an optimum solution in a wider number of cases than the pessimistic position 

(Dempe, et al., 2007).  For the remainder of this review we will be focussing on the optimistic 

position as this would be the case in a bi-level formulation of the tactical planning problem 

covered in this thesis.   

Even when limiting to the optimistic case however the bi-level problem has been shown to be 

strongly NP-Hard (Hansen, et al., 1992).   Not only that, but due to the nature of the linked 

problems even proving a solution is local optimal is NP-Hard (Vicente, et al., 1994).  Thus, although 

the bi-level formulation maps well to many real world applications the principal concern in the 
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field is developing algorithms and techniques to overcome the complexity involved in solving the 

model.   

In the remainder of this section some current applications of bi-level models will be highlighted 

showing the applicability of bi-level models to real world situations.  This is followed by exploring 

the current solution methods from the literature, showing the current efforts to solve this complex 

problem as well as picking out a new potentially emerging area in the use of surrogates.  Finishing 

with a discussion to summarise these findings and identify areas applicable to this work.     

2.2.1 Bi-Level Model Applications 

Many real world scenarios have been modelled as a bi-level problem.  The linked yet separate 

problems, where one element does not necessarily have full control over all aspects, e.g. in a 

decentralised situation, can be found in a lot of real world scenarios such as economics, 

management, and logistics, to name a few.  In the remains of this section some of the examples 

from the literature are highlighted with a particular focus on those close to the tactical planning 

problem towards the end of the section. 

One application of bi-level modelling is in network design, including in the analogous areas of 

computer and road networks.  Examples being that of (Camacho-Vallejo, et al., 2015) where the 

problem of defining a topological network by grouping clusters into groups and allocating users to 

clusters within those groups is modelled as a bi-level problem.  

In (Ceylan & Bell, 2004) traffic light timings are optimised using a bi-level model where the follower 

optimises the traffic flow based on the current timings set by the leader, similarly in (Chen, et al., 

2010) the leader models decisions of the road network planner with the follower modelling the 

users of the network planning their journeys where the planner is optimising for safety, cost, 

congestion, etc. and the users of the network try to plot the cheapest routes in the network.  Some 

other similar examples are in transit priority allocation in (Mesbah, et al., 2011) where the 

objective is setting the road priority between private cars and other transit methods and in 

(Yamada, et al., 2009) to find solutions for a multi-modal transport network.   

A further frequent application in the transport field found in the literature is that of using bi-level 

models to solve a class of problem called toll-setting problems.  Here the goal of the leader is to 

set tolls in private roads within the network with various goals such as revenue or traffic control 

while the follower, as with most transport problems, acts as the users of the network attempting 

to minimise their costs whilst also taking account of travel times.  These can be seen in papers 

such as (Kalashnikov, et al., 2016) where the leader is the regulator setting tolls and the follower 
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is the transportation companies using the network.  Or in (Sinha, et al., 2015) with more general 

road users as the follower.  Further objectives are sometimes also considered such as 

environmental impacts or health impacts in the work of (Wang, et al., 2014).   

Environmental impacts are also the key consideration in a number of bi level applications based 

around regulation, taxing and fine setting.  Examples of this are (Whittaker, et al., 2017) where 

the leader is setting environmental policy and the followers attempt to comply whilst also 

targeting their own financial objectives.  Further examples are in the water industry where the 

trade-off between water quality and agriculture is modelled in (Bostian, et al., 1-12), or for mining 

regulation where the leader tries to maximise tax income while minimising the environmental 

impact of the mining companies modelled as the followers (Sinha, et al., 2013). 

Similarly to the GAP literature, bi-level models have also been applied to facility location problems 

where additional features are accounted for, such as the location rivals may choose to place their 

own facilities (Küçükaydin, et al., 2011), or the addition of competitive pricing decisions as in 

(Panin, et al., 2014).  Another example of a location problem in the literature is that of using a bi 

level model to solve the ring star problem where facilities are placed on some nodes and the 

remaining nodes are linked to these, such as in concentrator placement in a network or 

distribution centre locations.  This has been solved using a bi level model where the leader selects 

the locations and the follower then produces the optimal path to link up the remaining uncovered 

nodes to those locations (Calvete, et al., 2013).   The capacitated facility location problem has also 

been modelled as a bi level problem in (Caramia & Mari, 2016) with the additional features over 

the GAP version being the splitting into two decision makers with the leader deciding on facilities 

to open and their capacities and the follower then attempting to make optimal use of those 

capacitated facilities to give an overall solution that is maximising profits.  

Another class of problems that translates well into a bi-level model is the principal-agent problem 

class (Cecchini, et al., 2013).  In these problems the principal does not have direct control over the 

agent’s actions, instead the agent will act to benefit themselves as much as they can.  In this case 

the principal just wields indirect control through use of incentives.  This has many practical 

applications such as that between a doctor and their patient, or employers and their employees, 

or when a firm subcontracts to another firm (Van Ackere, 1993).  

Further applications where as well as not having direct control over the other party bi-level models 

are also used in cases where the other party is actively attempting to defeat or harm the decision 

maker who is looking to optimise defence against various situations.  This could be in the literal 
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sense where bi-level models have been implemented to optimise missile interception from an 

attack.  The leader is placing missile defence platforms while the follower attempts to maximise 

damage of an attack (Brown, et al., 2005).  However the same approach can be used to guard 

against worst case scenarios such as optimising network coverage to guard against failures where 

the leader is building the network and the follower is selecting the optimal x facilities to fail to 

maximally disrupt that coverage (O’Hanley & Church, 2011). 

Bi-level problems are also commonly found in design tasks, such as structural design where the 

leader is producing the design of the object with the follower then minimises the potential energy 

problem to allow the calculation of the stresses and loads to test the breaking of the material 

property constraints defined for the leader (Christiansen, et al., 2001).  As well as in structural 

design bi-level models have also been applied in the field of chemistry where the goal is the 

optimal reaction or outcome from some chemical process.  The leader is controlling the quantities 

and mixes of chemical components and the follower is an optimisation problem that simulates 

the resulting chemical reaction (Halter & Mostaghim, 2006). 

A further application of bi-level modelling is within the field of model development itself.  

Metaheuristics and machine learning models require tuning of certain parameters to achieve 

optimal results.  The combinations for these are often vast thus this has motivated some 

applications to utilise a bi-level model for this purpose.  Here the leader controls the parameters 

and the follower is the model being tuned with the goal to achieve the optimal results from the 

resulting model.  An example of a bi-level model used to tune a machine learning model can be 

seen in (Bennett, et al., 2008) with a corresponding example for an optimisation algorithm in 

(Sinha, et al., 2014).  In a more practical sense, similarly this approach has been applied to reverse 

optimal control problems whereby the goal is to generate the best reward function for a given 

dataset for use in training robotics and similar fields (Suryan, et al., 2016). 

The final application area found in the literature, and that of most interest for this thesis, is that 

of supply chain planning as this is close to the field of service chain planning in which the tactical 

planning problem resides.  Most examples in the supply chain management area were covering 

facility location already explored above but there were a few examples of bi-level models being 

implemented for planning and scheduling.   

One example is a machine scheduling problem introduced in (Lukač, et al., 2008).  Here the leader 

is scheduling products to machines.  Each machine can only handle one product at a time and 

switching products incurs an additional set up cost.  The leader tries to minimise this set up time 
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while the followers are optimising the output and storage associated with each machine.  The 

paper cites a real world application in the pharmaceutical industry however the model developed 

only contains 2 machines potentially indicating an issue with scaling as the problem gets larger. 

Another example is the integration of the planning and scheduling processes in (Chu, et al., 2015).  

In this paper the supply chain planning problem is modelled as the leader with the schedule the 

follower.  The leader sets the planned quantities for production in the various time periods in the 

plan and the follower produces a schedule for each period that attempts to meet these targets.  

The goals of the leader are to set production levels such that they maximise economic gain 

through meeting customer demand.  The goal of the follower is to make optimal use of the 

machinery available to generate the planned production levels.  Again however, the case study 

example is not that large.  The leader has 10 decision variables per period for the 10 products with 

12 periods in the plan for 120 variables.  Each follower also only has 10 units on which to schedule 

these products within their 7 days per planning period. 

2.2.2 Bi-Level Model Solution Techniques 

Bi-level models are complex to solve due to them containing two separate but linked optimisation 

problems that must be optimised together.  The most common methods found in the literature 

solve this issue by merging the leader and follower into a single model in a process called 

dimension or level reduction (Rangarajan, 2010).  This allows any standard solution techniques for 

optimisation problems to be applied so long as their requirements are met (e.g. continuous, 

combinatorial, etc.).  This does not work in all cases however as sometimes problem complexities 

or size make it infeasible to solve this combined single model.  In this case the nested approach is 

used whereby the follower model is solved inside the leader model for each evaluation of different 

leader solutions.  This approach has its own issues when dealing with large sized problems 

however, since the follower model must be solved for each and every leader evaluation (Oduguwa 

& Roy, 2002).  These evaluations can be computationally intensive and cause solution times to 

quickly become infeasible.  More recent work in the area has begun attempting to mitigate this 

issue through the use of meta- or surrogate models to replace parts of the bi-level problem. 

This section will first give an overview of dimension reduction solution techniques, before then 

covering the nested approach.  Finally some recent work on surrogates is highlighted that links 

into the work then carried out in this thesis. 
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2.2.2.1 Dimension Reduction 

The most common techniques found in the literature to solve the bi-level problems are that which 

involve dimension reduction.  In this case some method is used to combine the leader and follower 

to turn the bi-level problem into a single level problem, with a range of different approaches 

taken.  Once the single level version is created this is then solved using any range of available 

techniques. 

The most frequently encountered method to achieve this is through the use of the Karush-Kuhn-

Tucker (KKT) conditions of the follower model. In cases where the problem space is sufficiently 

regular the KKT conditions can be derived such that they are the necessary conditions for a 

solution to that problem to be optimal.  When derived for the follower model these can then be 

added to the leader model as additional constraints to merge the two models together, reducing 

the dimensionality of the problem to a single level problem.  This problem can then be solved 

using a number of different techniques. 

Some examples seen in the literature involve using standard linear programming techniques such 

as branch and bound (Shi, et al., 2006) or complimentary pivot algorithms (Önal, 1993).  Another 

common approach is to exploit the fact that an optimal solution of the problem will fall on a vertex 

of the constraint space by finding a solution using vertex enumeration (Tuy, et al., 1993).  

Single level reduction does not always guarantee an easily solvable problem however as the initial 

problem may have already contained a leader with decision variables or constraints that are not 

regular or the process of reduction may have generated a problem with a non-convex solution 

space even if both source problems were themselves convex (Shi, et al., 2005). In these cases 

standard techniques cannot be deployed. 

One solution found in the literature is to remove the constraints and instead replace them with 

penalty functions.  The resulting unconstrained optimisation is easier to solve and the search is 

directed towards valid space through the use of the penalty term.  This term would be zero for 

valid solutions but any that are breaking constraints would incur a cost, positive for minimisation 

problems and negative for maximisation.  This technique is combined with the KKT approach to 

dimension reduction to generate solutions in one of two ways.  In (Lv, et al., 2007) the problem is 

first reduced to a single level using the KKT conditions of the follower before the constraints of 

the new single level problem are replaced by the penalty function and the resulting problem 

solved.  The alternate approach found was to first replace the constraints of the leader and 
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follower with the penalty functions and then use the KKT approach to reduce the simplified leader 

and follower into a single level such as in (Ishizuka & Aiyoshi, 1992).  

Another was through the use of a trust region to approximate a portion of the objective function.  

A trust region that was itself a bi level model was used to approximate a bi level model in (Colson, 

et al., 2005), they then reduced it to a single level using the KKT approach and solved that to 

produce a solution to the problem. 

Finally in cases where the leader problem’s decision variables or constraints are not regular, and 

thus the resulting single layer problem is also not regular, then evolutionary algorithms such as a 

GA (Wang, et al., 2008) or particle swarm (Wan, et al., 2013) have been utilised to find a solution 

to the reduced dimension problem using KKT conditions.   

A few alternate methods for dimension reduction have also been explored, such as including the 

follower in the leader’s objective function through use of its penalty term (Anandalingam & White, 

1990) and in (Ye & Zhu, 2010) where the follower is replaced by its optimal value function.  The 

optimal value function is one which takes the leaders decision variables as a parameter and 

returns the corresponding optimal objective value from the follower.  The follower can then be 

replaced in the leader by a constraint stating that value of the followers objective function must 

be less than or equal to the optimal value.  In cases where the optimal value function is not known, 

an approximation can be utilised instead based on current members of the population when 

solving using an evolutionary approach such as in (Sinha, et al., 2020).   

2.2.2.2 Nested Approach 

The alternate to dimension reduction is the nested approach where the levels of the problem are 

left intact and the leader and follower are solved together as separate but linked problems.  This 

involves solving the lower level problem for each different higher level solution being explored 

(Sinha, et al., 2014) to obtain the followers objective value decisions for use in the objective 

function and constraint calculations of the leader.  This can require intense computation however, 

especially for large problems, due to the number of times the lower level model is evaluated.  

However as the models for the two levels remain separate they can have different solution 

methods applied.  This can allow exploitation of specific features of the leader and follower 

models.  There are generally two approaches to solving using the nested approach.  In the first the 

leader is solved using an evolutionary algorithm while the follower is solved using an exact 

method.  In cases where the follower is also suitably complex however then the nested approach 

requires solving both the leader and the follower using evolutionary methods. 
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A representative example of an evolutionary algorithm that is utilised a lot in the literature as the 

leader model in nested solution methods for the bi-level model is the genetic algorithm.  In a 

genetic algorithm based solution the follower is imbedded within the fitness function with solving 

this problem becoming part of the fitness evaluation for the leader.  As discussed this is 

computationally intensive however, particularly in a pop based algorithm like the GA since there 

will be a large number of these calculations required for each and every generation (Mesbah, et 

al., 2011).   

As such, the follower has often been a simpler problem in these approaches, such as the GA leader 

with a linear follower (Mathieu, et al., 1994) where the follower was reasonably simple with a 

single constraint per decision variable and the largest test number of decision variables was 17.  

In this case solving the linear follower was relatively quick and didn’t impact the solution 

evaluations of the leader GA too much. 

Another common option paired with a GA leader is a GA follower as in (Sinha, et al., 2014). Here 

the follower GA is solved for every evaluation of a leader solution as such the paper only handles 

smaller problem sizes up to around 40 variables.  Even so the function evaluations for the follower 

models are shown to be vast, reaching into the 10’s of millions for only thousands of leader 

evaluations.   

Some work around improving performance when using a GA leader with more complex followers 

have evolved around utilising simpler heuristics at the follower level, where the problem is too 

complex for an exact method, or attempting to utilise some feature of the problem to guide the 

algorithm.  An example of the former is seen in (Camacho-Vallejo, et al., 2015) where the GA 

leader contains a greedy constructive heuristic as a follower.  In this case the problem is optimising 

a LAN configuration with the GA leader attempting to minimise connection cost while the 

constrictive follower is building paths minimising message time.  Another example of utilising a 

simpler follower to reach a solution is also seen in (Yin, 2000) where a gradient descent algorithm 

is used to solve the follower for each evaluation of the GA leader. 

An example of utilising the features of a problem to assist the algorithm is seen in (Li & Wang, 

2007) where the solutions to the follower model are utilised in a hybrid simplex method crossover 

operator within the GA leader to better guide the evolution of the population towards optimal 

solutions.  

Other methods used to model the leader seen in the literature are in (Li, et al., 2006) where a 

particle swarm (PSO) model was used as both the leader and the follower to solve various toy 



 

36 

 

problems.  The algorithms performed well in the tests but there was no analysis performed on 

their computational performance. Or in (Camacho-Vallejo, et al., 2015) where a scatter search 

algorithm was utilised as the leader with linear followers solved using CPLEX. 

Another evolutionary technique seen in the literature is that of differential evolution (DE).  An 

example of this is (Angelo, et al., 2013) where a DE was used as both the leader and follower to 

solve test problems from the literature.  A DE has also been utilised as leader in (Zhu, et al., 2006).  

In this case the follower was implemented using an interior point algorithm with the authors able 

to utilise testing the follower problem for solvability to screen out infeasible solutions and reach 

some performance improvement. 

Finally, a mix of evolutionary algorithms has also been used in some situations in order to take 

advantage of specific features of the problem.  A specific example of this is in (Angelo & Barbosa, 

2015) where they solved a distribution planning problem through use of an ant colony 

optimisation model as the leader to take advantage of their advantages in solving problems 

involving route building and then a DE at the lower level to provide solutions to the follower 

problem. 

Despite often being computationally expensive the performance of the nested approach can also 

be improved through parallelising the lower level solution evaluations or by further exploiting the 

separate model approach to replace the lower model with a surrogate.  These are covered in the 

next section. 

2.2.2.3 Surrogates 

Surrogates, also referred to as meta-models, are often used where problems are too large or 

complex making them too computationally expensive to solve in a reasonable time frame.  This 

situation frequently arises when dealing with real world problems where problem sizes are often 

much larger than the toy problems used in academia (Wang & Shan, 2006).  To solve this problem 

computationally expensive processes or calculations are replaced with a surrogate or meta-model 

that is easier to compute.  These models effectively act as approximations or predictors for the 

behaviour of the more complex model they are built to replace.  The surrogate is generally trained 

using samples from the model they are replacing, however in cases where that model is more 

complex the surrogate is often updated as the search progresses.  They have been widely used 

already in various fields such as simulation, process modelling and control, parameter estimation 

and optimisation to name a few (Bhosekar & Ierapetritou, 2018).  Some common types of 

surrogate models utilised in these areas include: 
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 polynomial response surface (Hosder, et al., 2001) – Model based on the least squares  

 Kriging (Hu & Mahadevan, 2016) – An approximation model for a function based on the 

weighted average of points local to the value being calculated  

 Radial basis function (Ozcanan & Atahan, 2021) – based on a system of linear equations 

 Support vector regression (Clarke, et al., 2005) -  Supervised learning algorithm with 

configurable acceptable error levels when fitting to the training data 

 Artificial Neural Network(ANN) (Fyfe, 2005) – A model of a group of nodes connected 

with attached transmission functions and weights that are tuned to fit training data using 

a learning algorithm 

For the purposes of this literature review the focus is on their application to bi-level models. 

However, despite the prevalence of work done on surrogates, utilising these to reduce the 

computational complexity of bi level models has been relatively scarce in the literature (Islam, et 

al., 2017).   

The main use of surrogate methods used in bi level modelling that could be found in the literature 

is that of reaction set mapping.  The reaction set for a bi-level model is the mapping between the 

leader’s objective values and the resulting follower objective values upon solving the follower 

objective function with those given leader objective values.  If that entire set was known then 

there would be no need to calculate the follower objective function at each iteration and thus the 

problem would effectively collapse to a single level.  However in any practical problem it is not 

possible to know the entire reaction set in advance.  Thus the reaction set is approximated by a 

surrogate.  This surrogate is iteratively updated as the optimisation progresses.   

The current techniques found that have been used to build a surrogate model for the reaction set 

mapping in the literature so far are that of k-NN approximation, such as used by (Angelo, et al., 

2014) or quadratic approximation, such as in (Sinha, et al., 2017).  In both cases, when evaluating 

an offspring during evolution if there are enough members nearby, through some distance 

measure, that have calculated their fitness fully by optimising the follower then the surrogate for 

the reaction set mapping is used, if not enough then the follower is optimised fully.  In this way 

the surrogates are updated as the evolution progresses whilst computational time is saved 

whenever the surrogate is used instead of the follower’s objective function. 

2.2.3 Bi-Level Model Discussion 
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In this section bi-level models were explored with their two level behaviour effectively modelling 

many real world applications, as evidenced by the wide range of problems that have currently 

been tackled in the literature.  Applications for this technique in real world problems are varied 

such as the road and computer network design, environmental regulation, facility location, to 

name a few. This list also including the field of supply chain management.  The latter of these is 

one of the motivating factors behind exploring bi level modelling to apply to the tactical planning 

problem in this thesis due to the similarities between supply and service chain management. 

Many challenges remain in this field however brought about primarily by the inherent complexity 

involved in solving two connected models together, particularly in real world scenarios where 

large data sets or problem sizes are often involved.  Standard solution techniques involving 

reducing the bi-level problems dimensions to a single level are generally not applicable in these 

scenarios where the problems are already overly complicated.  The nested approach show some 

promise with the ability to bring separate techniques to the different parts of the problem as well 

as introducing opportunity for parallelisation.  There is also opportunity for novel work in the area 

around the use of surrogate models within portions of the bi-level process as this still seems fairly 

rare in the literature. 

Finally, as with GAP, although this has been applied to some similar problems, such as in service 

chain management, there are also no examples of bi level models being used for the tactical 

planning problem within service chain planning. 

 2.3 Conclusion 

In this section an overview of the literature was conducted, focussing on the areas of GAP and bi-

level problems that will be the focus of the remainder of this thesis.  

In the field of GAP it can be seen that although this is a mature field there is still scope for some 

new work there in applying it to a new field in the case of the tactical planning problem.  The 

selection of the GAP for this purpose can also be seen as a logical decision based on the similarity 

between the demand allocation sub-problem of the tactical plan and a scheduling problem.  These 

have been covered by GAPs already in the literature so should also be applicable to that sub-

problem.  This is explored in chapter 4 where the capacity demand sup problem is picked out and 

a GA and linear model are used to solve it.  These were chosen due to them both being common 

solution methods seen in both the GAP and bi-level literature. 
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From the bi-level literature, although also a reasonably mature field with a wide range of 

applications and solutions already demonstrated, there are still some key gaps in the knowledge.  

Issues remain about computational complexity, particularly when applying to real world problems.  

Again the technique has not been deployed in the tactical planning phase of service chain 

management.  Some applications can be seen in the analogous supply chain field but those 

solutions are not directly applicable due to the differences between the fields.  The closeness 

though does motivate the exploration of bi-level modelling as a potential solution for this problem 

and guarantees some novel results will be produced.  Chapter 5 covers this, where a bi-level model 

is investigated as a potential solution for the tactical planning problem. 

The final piece of interesting work that can be approached is to explore methods to potentially 

mitigate, at least partially, some of the computational complexity issues of the bi-level 

optimisation process.  Surrogate models have shown promise for this in other areas and are as yet 

not very common in the bi-level literature.  This, along with the issues with incomplete data 

discovered, motivates their investigation in chapters 6 and 7 and finally integrated into the bi-

level model in chapter 8 to test their impact on performance there.   

All of this work is also carried out in a real world problem utilising real world data that produced 

some real world novel impact in the production of optimisation algorithms that have been 

deployed in the heart of a couple of applications being used across the UK. 
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Chapter 3 

Tactical Planning Problem Formulation 

3.1 Introduction 

The first step to solving the very large tactical planning problem defined in section 1.2 involves 

formally defining it mathematically. This involves the initial capturing of the decision variables (or 

levers) available in the planning model and the defining of their constraints.  Once the model is 

defined then solution algorithms, either exact or heuristic, can be applied to find the optimal (in 

the case of exact) or near optimal solutions to the problem.  In this chapter we model the problem 

using linear programming notation as it is commonly used to solve similar problems. Additionally 

it is a good way to mathematically define the tactical planning problem, given it involves multiple 

decision levers that are subject to constraints in their use.  The fixed levers from the tactical 

planning model, namely shrinkage and productivity, are simply treated as constants and do not 

require modelling here. 

The remainder of this chapter will progress as follows.  First the overall framework is defined 

outlining the overall costs in section 3.2. Then section 3.3 expands the resource costs to add the 

resource based decision variables and their constraints.  Section 3.4 then expands the demand 

cost portion of the equation, adding the demand decisions and constraints.  The remaining 

constraints are defined in section 3.5 where the model is completed. This is followed by a brief 

analysis of the problem complexity in the context of the applied problem in section 3.6.  Finally 

the chapter concludes in section 3.7. 

3.2 Model Framework 

The overall model framework is rather simple in concept.   

First, calculate the base cost, this is a constant.  It includes the cost for resources, and the cost if 

no tasks are completed.  Resources represent members of the workforce which have a set of skills, 

where having a specific skill indicates this resource has the capability to complete tasks requiring 

the matching skill to complete. Each skill a resource has is given a specific cost or efficiency with 

resources generally starting allocated to their cheapest or most efficient skill, this is called their 

primary skill. Tasks are then jobs which require a specific skill to complete and thus can only be 

fulfilled by resources with a matching skill.  Both resources and tasks also have an area which 
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indicates a work area in which they are located.  Resources generally can only complete tasks 

within the same area with an additional cost incurred to pick up tasks in different areas. Each 

resource has an amount of time available, sometimes called capacity, and each task has an amount 

of time required to complete.  Multiple tasks can be assigned to the same resource so long as 

there is still time available to use.   

Then, for each period in the plan, add any additional costs incurred by resources:   

 Skill moves - where resources time is applied to a skill other than their primary.   

 Area moves – the cost associated with moving a resource away from their current location 

to work in a different geographical area 

 Recruitment – the introduction of new resources with a specific skill set 

 Training – adding an additional skill to the set of skills a resource is able to complete 

 Wastage/reduction – the reduction in the number of resources with a specific skill set 

 Overtime – additional time applied to a specific resource usually at a premium cost 

Finally subtract the cost of any tasks completed as well as adding any additional costs incurred.  

Each task has a due date which is the period in the plan in which it should be completed, e.g. have 

the time allocated to it.  Costs can be incurred by doing this task early or late by moving the task 

earlier or later.  There are also costs for failing to meet the tasks service level agreement (SLA).  

This is an agreement whereby a certain percentage of that task have to be completed no more 

than a certain number of days late.  The percentage and the allowed number of days both vary 

depending on the specific agreement.  

Mathematically, let t, an integer, denote an individual period of the plan and T, a natural number, 

the total number of periods.  Here a period being an individual chunk of time.   For example in a 

daily plan where each period indicates a day then period 0 would be today and period 1 would be 

tomorrow. Each individual resource is denoted by r, an integer index for a resource from the 

resource set.  R is a natural number indicating the size of that set. Finally j is the integer index of 

a task out of natural number J total tasks.  Using these we define the initial framework as: 

𝑚𝑖𝑛: ∑ [∑ 𝑐𝑟𝑡

𝑅

𝑟=1

]

𝑇

𝑡=1

+  ∑ 𝑘𝑗𝑡

𝐽

𝑗=1

  (4) 

Where 𝑐𝑟𝑡 is a real number denoting the additional costs incurred by resource r in period t (e.g. 

through overtime or skill/area moves) and 𝑘𝑗𝑡 is the real number that denotes the costs associated 

with the task type j completed in period t. 
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3.3 Additional Resource Costs 𝒄𝒓𝒕 

In this section the additional costs incurred by resources within a period are expanded.  This 

includes additional costs for the resource time allocation, overtime assignment, recruitment, 

reduction, and training decision variables.  Initially the time allocation and overtime decision 

variables are added in 3.3.1 including a refactoring of resources into groups to reduce the number 

of decision variables. This is followed by the addition of the recruitment and reduction decision 

variables in section 3.3.2, and training in section 3.3.3. 

3.3.1 Resource time allocation 

First step in defining the model is designing how to represent a particular allocation of a resource’s 

available time.  In this sub-section how to model the allocation of a resource’s base time and their 

overtime is first defined in 3.3.1.1 and 3.3.1.2 respectively.  In 3.3.1.3 a concept of “resource 

groups” is created to reduce the number of variables produced by this allocation by aggregating 

similar resources into buckets.  This is followed by a refactoring of the allocation and overtime 

decision variables to fit the resource groups in 3.3.1.4 before ending this sub-section with a final 

point on the restrictions from this grouping in 3.3.1.5. 

3.3.1.1 Base Resource Time 

 

The first component to model is the allocation of a resource’s time to a skill, integer index s, within 

an area, integer index a.  As a first step we define a decision variable for each combination a 

resource could cover. 

For example, if a resource could perform 3 different skills and could work in 3 different areas, 9 

decision variables are produced (one for each combination of skill + area).  

Let A be the natural number of areas and S the natural number of skills, then this gives the cost 

for the allocation of resource r in period t as: 

𝑏𝑟𝑡 = ∑ [∑ 𝜔𝑟𝑎𝑠𝑥𝑟𝑎𝑠𝑡

𝑆

𝑠=1

]

𝐴

𝑎=1

  (5) 
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Where 𝑥𝑟𝑎𝑠𝑡 is the decision variable indicating the real value amount of resource r’s time that is 

allocated to perform skill s in area a in period t.  𝜔𝑟𝑎𝑠 is the real value cost associated with the use 

of that resource in this skill and area. 

This requires a related constraint: 

I. ∑ [∑ 𝑥𝑟𝑎𝑠𝑡
𝑆
𝑠=1 ]𝐴

𝑎=1 ≤  𝜎𝑟𝑡  ∀ 𝑟, 𝑡 

Where 𝜎𝑟𝑡 is the real value amount of time available to resource r in period t.  Essentially this is 

limiting the total amount of time drawn from a particular resource to be less than the amount of 

time that resource has available. 

At this stage we need to also start to construct the constraint that links our used capacity to the 

met demand. 

II. ∑ [𝜖𝑟𝑎𝑠𝑥𝑟𝑎𝑠𝑡]𝑅
𝑟=1 −  𝐷𝑠𝑎𝑡 = 0 ∀ 𝑎, 𝑠, 𝑡 

Here we introduce a new real value constant, 𝜖𝑟𝑎𝑠, which indicates the efficiency of resource r, 

using skill s in area a.  This is used to model a resource taking more time when using an unfamiliar 

skill or losing time to travelling when being utilised outside their primary area.  The second factor, 

𝐷𝑠𝑎𝑡, is there to indicate the total time used meeting demand of skill s in area a in period t. This 

variable is expanded in section 3.3 when the demand side of the equation is defined.  Currently 

this is a real valued placeholder for the expansion done in that section. 

This constraint is therefore specifying that the total time drawn from resources for a particular 

skill in a particular area in a particular period has to match the total time used on the same type 

of tasks. 

Putting this all together, by the end of this sub-section we now have the model: 

𝑚𝑖𝑛: ∑ [∑ [∑ [∑ 𝜔𝑟𝑎𝑠𝑥𝑟𝑎𝑠𝑡

𝑆

𝑠=1

]

𝐴

𝑎=1

+  𝑐𝑟𝑡
′ ]

𝑅

𝑟=1

+  ∑ 𝑘𝑗𝑡

𝐽

𝑗=1

]

𝑇

𝑡=1

 (6) 

Such that: 

I. ∑ [∑ 𝑥𝑟𝑎𝑠𝑡
𝑆
𝑠=1 ]𝐴

𝑎=1 ≤  𝜎𝑟𝑡  ∀ 𝑟, 𝑡 

II. ∑ [𝜖𝑟𝑎𝑠𝑥𝑟𝑎𝑠𝑡]𝑅
𝑟=1 −  𝐷𝑠𝑎𝑡 = 0 ∀ 𝑎, 𝑠, 𝑡 
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Where 𝑐𝑟𝑡
′  indicates the real value sum of remaining additional resource costs other than the cost 

of their allocation.  The notation to expand it to define overtime, recruitment/reductions, and 

training decisions is developed in subsequent sections. 

 

3.3.1.2 Overtime 

To model overtime use for a resource we have to take account of the two main constraints.  Firstly, 

there is a total limit of overtime allowed across the entire model.  Secondly, there is an individual 

limit applied to each resource, e.g. a resource may only be allowed to have 8% additional overtime 

on top of their standard hours.  Finally the overtime decision variables are required with the cost 

associated with using overtime for the associated resource. 

To add the decision variable a similar process as the resource time allocation is followed.  A 

decision variable is generated for each skill a resource has in each area they can cover for each 

period of the plan to indicate overtime use by that resource on that skill in that area in that period.  

This gives the cost equation for overtime use on a specific resource as: 

𝑜𝑟𝑡 = ∑ [∑[(𝜔𝑟𝑎𝑠 + 𝑉)𝑥𝑟𝑎𝑠𝑡
′ ]

𝑆

𝑠=1

]

𝐴

𝑎=1

 (7) 

Here the additional cost, V, is the real value cost for the use of overtime and 𝑥𝑟𝑎𝑠𝑡
′  is the real value 

decision variable indicating allocation of overtime for resource r to skill s in area a in period t. 

To take account of the overtime constraints, first a limit to the overtime use by a single resource 

is added: 

III. ∑ [∑ 𝑥𝑟𝑎𝑠𝑡
′𝑆

𝑠=1 ]𝐴
𝑎=1 ≤  𝜗𝜎𝑟𝑡  ∀ 𝑟, 𝑡 

Here 𝜗 is the real value proportion of a resources time that they are allowed as additional 

overtime, thus multiplying it by their time available in period t,  𝜎𝑟𝑡, gives the maximum overtime 

they have available in period t (𝜗𝜎𝑟𝑡).  This essentially constrains the total overtime used by a 

resource within a period to be less than or equal to the maximum overtime they have available. 

Along with this we need to also constrain the total overtime used by all resources: 

IV. ∑ [∑ [∑ [∑ 𝑥𝑟𝑎𝑠𝑡
′𝑇

𝑡=1 ]𝑅
𝑟=1 ]𝑆

𝑠=1 ]𝐴
𝑎=1 ≤  𝜃 
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Here 𝜃is the real value indicating the maximum overtime budgeted for the entire plan.  This 

constraint effectively limits all overtime allocated within the objective function to be less than or 

equal to the maximum allowed. 

Finally, we need to modify constraint II to take account of the extra capacity for a skill within an 

area drawn from overtime: 

II. ∑ [𝜖𝑟𝑎𝑠(𝑥𝑟𝑎𝑠𝑡 + 𝑥𝑟𝑎𝑠𝑡
′ )]𝑅

𝑟=1 −  𝐷𝑠𝑎𝑡 = 0 ∀ 𝑎, 𝑠, 𝑡 

As before this states that total capacity drawn for a skill within an area within a period must equal 

the total demand fulfilled for the same.  In this case the capacity drawn now includes that drawn 

from overtime also. 

Adding this overtime into the main equation we now have: 

𝑚𝑖𝑛: ∑ [∑ [∑ [∑[𝜔𝑟𝑎𝑠𝑥𝑟𝑎𝑠𝑡 + (𝜔𝑟𝑎𝑠 + 𝑉)𝑥𝑟𝑎𝑠𝑡
′  ]

𝑆

𝑠=1

]

𝐴

𝑎=1

+ 𝑐𝑟𝑡
′′ ]

𝑅

𝑟=1

+ ∑ 𝑘𝑗𝑡

𝐽

𝑗=1

]

𝑇

𝑡=1

 (8) 

Such that: 

I. ∑ [∑ 𝑥𝑟𝑎𝑠𝑡
𝑆
𝑠=1 ]𝐴

𝑎=1 ≤  𝜎𝑟𝑡  ∀ 𝑟, 𝑡 

II. ∑ [𝜖𝑟𝑎𝑠(𝑥𝑟𝑎𝑠𝑡 + 𝑥𝑟𝑎𝑠𝑡
′ )]𝑅

𝑟=1 −  𝐷𝑠𝑎𝑡 = 0 ∀ 𝑎, 𝑠, 𝑡 

III. ∑ [∑ 𝑥𝑟𝑎𝑠𝑡
′𝑆

𝑠=1 ]𝐴
𝑎=1 ≤  𝜗𝜎𝑟𝑡  ∀ 𝑟, 𝑡 

IV. ∑ [∑ [∑ [∑ 𝑥𝑟𝑎𝑠𝑡
′𝑇

𝑡=1 ]𝑅
𝑟=1 ]𝑆

𝑠=1 ]𝐴
𝑎=1 ≤  𝜃 

Where 𝑐𝑟𝑡
′′  indicates the remaining resource costs yet to be modelled.  There are now just 

recruitment, reductions, and training. 

3.3.1.3 Resource groups 

 

Up to this point, resources were thought of as individuals.  Each resource was modelled 

individually.  However not only is this inefficient (it creates a large number of variables) it also 

makes it difficult to model the concept of recruitment and training.  In order to allow for the 

modelling of the final resource costs we instead need to start thinking about resources as groups. 

In this definition, resource group g is the integer index of the set of resources with a particular 

ordered list of skill preferences.  E.g. if two resources both have skill1 as their primary skill and 

skill2 as their secondary skill, then they would be described as both being of the same resource 
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group.  A further refinement to this is to say that area group ga is the integer index of the subset 

of resources from resource group g whose primary area is a.  

We now have the tools available to model recruitment of a resource belonging to a specific group 

in a specific area.  With these changes in place we can now further refine the model in an attempt 

to reduce the number of required variables before moving on to completing the resource costs 

section. 

3.3.1.4 Base time and Overtime refactoring 

If 𝐴𝑟 indicates the set of areas resource r can cover and 𝑆𝑟 is the set of skills they can perform, 

then currently to produce the base time and overtime allocation for a single resource we are 

producing |𝑆𝑟| ∗ |𝐴𝑟| ∗ 2  decision variables for every period of the plan.   

This is a variable for each skill and area combination that resources can cover multiplied by 2 as 

each allocation variable also has an associated overtime variable. 

Defining resources as groups we can instead use decision variables to model an area group’s 

allocation within their primary area.   Allocation to different areas are then modelled using 

decision variables for movement between area groups.  Add a variable for each of the resource 

group’s possible alternate areas to indicate movement of time of area group 𝑔𝑎 to area group 𝑔𝑎′.  

This would produce only an additional |𝐴𝑟| − 1 variables for the area moves with |𝑆𝑟| variables 

generated for the time allocation within an area. 

This has already reduced the number of variables as  |𝑆𝑟| +  |𝐴𝑟|−1 ≤  |𝑆𝑟| ∗ |𝐴𝑟|∀ 𝑆𝑟, 𝐴𝑟 

In order to add this to the model we introduce area movement decision variables to indicate 

movement of an area group’s time to a different area. Applying these changes to the resource 

time allocation cost we get the new equation: 

𝑎𝑔𝑎 𝑡 =  ∑ [𝜔𝑔𝑠𝑥𝑔𝑎𝑠𝑡]

𝑠∈𝑆𝑔

 + ∑ [𝑀𝑔𝑎𝑔
𝑎′ 𝑚𝑔𝑎𝑔

𝑎′𝑡]

𝑎′∈ 𝐴𝑔𝑎

  (9) 

Now 𝑥𝑔𝑎𝑠𝑡  is indicating the real value allocation of time from resource group g in area a to skill s 

in period t, with 𝜔𝑔𝑠 being the real value cost for resource group g to use skill s. 

The second sum in the equation is the extraction of the area choice to now model an area 

movement instead.  Here 𝑚𝑔𝑎𝑔
𝑎′ is the real value decision variable, indicating the amount of time 

of resource group g being sent from area a to 𝑎′ with 𝑀𝑔𝑎𝑔
𝑎′  being the real value cost associated 

with this movement. 
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In order for this refactoring to work the constraints also needs to be modified.  With available time 

being moved between resource groups the first constraint needs to be altered to reflect this.  We 

need to add time that is being loaned out, as that is the same as it being utilised, and subtract 

time that is being loaned in.  We also need to apply the efficiency factor to the time being loaned 

in to model loss of time when moving a resource’s time between areas. 

Thus the first constraint becomes: 

I. ∑ [𝑥𝑔𝑎𝑠𝑡]𝑆
𝑠=1 + ∑ [𝑚𝑔𝑎𝑔

𝑎′𝑡 − 𝜖𝑔
𝑎′𝑎  𝑚𝑔

𝑎′𝑔𝑎𝑡]𝐴
𝑎′=1 ≤  𝜎𝑔𝑎𝑡  ∀ 𝑔, 𝑎, 𝑡 

Here we see the constraint is that the total time used by area group 𝑔𝑎 in period t (∑ 𝑥𝑔𝑎𝑠𝑡
𝑆
𝑠=1 ) is 

added to the total time loaned out minus the total time loaned in. The time loaned in is further 

modified by a real valued efficiency factor 𝜖𝑔
𝑎′𝑎indicating the efficiency of moving time from area 

group 𝑔𝑎′ to area a.  This efficiency factor allows the modelling of time lost to travelling or working 

in an unfamiliar area.  This factor is applied to the time loaned in as it is within this new area that 

the time would be lost.  As before, this is constrained to be less than or equal to the total time 

that area group has available in that period. 

The second constraint also requires some modification as we are now referring to resource groups 

rather than resources.  Also, the efficiency factor for working in different areas is now covered by 

the area move decision variable and thus the efficiency factor for this constraint is only attached 

to the skill and resource group.  Making the modifications gives us: 

II. ∑ [𝜖𝑔𝑠𝑥𝑔𝑎𝑠𝑡]𝐺
𝑔=1 −  𝐷𝑠𝑎𝑡 = 0 ∀ 𝑎, 𝑠, 𝑡 

It should be noted that the overtime variable has been removed from this constraint as we have 

not yet reached that part of the refactoring process.  As it turns out overtime will no longer be 

required within this constraint and we will see the reason why in the coming paragraphs. 

Following on from this, it is now also possible to model the overtime as a single decision variable 

for each area group.  The decision being modelled is then how much overtime to allocate to that 

area group.  Then similarly to the area moves that time is added to the available time of the area 

group within the constraint.  This removes the need for one variable for each possible allocation 

and instead reduces the number of variables required to indicate overtime for a single area group 

to one per period. 

Making this change the overtime cost in the objective function becomes: 
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𝑜𝑔𝑎𝑡 = 𝑉𝑥𝑔𝑎𝑡
′   (10) 

Where V is still the real valued cost associated with overtime and the decision variable is now a 

real value setting how much overtime to give to resource group g in area a in period t.   

Next, to ensure that the overtime is being allocated to the available time for that area group, we 

must again modify the first constraint by subtracting the amount of overtime allocated from the 

left hand side.  This gives us: 

I. ∑ [𝑥𝑔𝑎𝑠𝑡 − 𝑥𝑔𝑎𝑡
′ ]𝑆

𝑠=1 + ∑ [𝑚𝑔𝑎𝑔
𝑎′𝑡 − 𝜖𝑔

𝑎′𝑎  𝑚𝑔
𝑎′𝑔𝑎𝑡]𝐴

𝑎′=1 ≤  𝜎𝑔𝑎𝑡  ∀ 𝑔, 𝑎, 𝑡 

This ensures that any additional time allocated to overtime is made available to the relevant 

resource group in the relevant area and period. 

Finally a slight re-factoring of constraints 3 and 4 is required due to the change in implementation: 

III. 𝑥𝑔𝑎𝑡
′ ≤  𝜗𝜎𝑔𝑎𝑡  ∀ 𝑔𝑎, 𝑡 

IV. ∑ [∑ [∑ 𝑥𝑔𝑎𝑡
′𝑇

𝑡=1 ]𝐴
𝑎=1 ]𝐺

𝑔=1 ≤  𝜃 

Finally, as mentioned above, an overtime factor is no longer required within constraint II.  This is 

because overtime allocation is now being added to the available time for a resource within the 

model, rather than being directly assigned to a skill/area/period coordinate as before. 

Bringing this altogether the improved model in its current state is now: 

𝑚𝑖𝑛: ∑ [∑ [∑ [ ∑ [𝜔𝑔𝑠𝑥𝑔𝑎𝑠𝑡]

𝑠∈𝑆𝑔

 + ∑ [𝑀𝑔𝑎𝑔
𝑎′ 𝑚𝑔𝑎𝑔

𝑎′𝑡]

𝑎′∈ 𝐴𝑔𝑎

+ 𝑉𝑥𝑔𝑎𝑡
′ + 𝑐𝑔𝑎𝑡

′′ ] 

𝐺

𝑔=1

]

𝐴

𝑎=1

𝑇

𝑡=1

+  ∑ 𝑘𝑗𝑡

𝐽

𝑗=1

]  (11) 

Such that: 

I. ∑ [𝑥𝑔𝑎𝑠𝑡 − 𝑥𝑔𝑎𝑡
′ ]𝑆

𝑠=1 + ∑ [𝑚𝑔𝑎𝑔
𝑎′𝑡 − 𝜖𝑔

𝑎′𝑎  𝑚𝑔
𝑎′𝑔𝑎𝑡]𝐴

𝑎′=1 ≤  𝜎𝑔𝑎𝑡  ∀ 𝑔, 𝑎, 𝑡 

II. ∑ [𝜖𝑔𝑠𝑥𝑔𝑎𝑠𝑡]𝐺
𝑔=1 −  𝐷𝑠𝑎𝑡 = 0 ∀ 𝑎, 𝑠, 𝑡 

III. 𝑥𝑔𝑎𝑡
′ ≤  𝜗𝜎𝑔𝑎𝑡  ∀ 𝑔𝑎, 𝑡 

IV. ∑ [∑ [∑ 𝑥𝑔𝑎𝑡
′𝑇

𝑡=1 ]𝐴
𝑎=1 ]𝐺

𝑔=1 ≤  𝜃 
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3.3.2 Recruitment and Reduction 

Recruitment is the addition of new resources into the plan, they will appear on a given period and 

exist for all future periods thereafter.  Reductions is the corollary to this where resources are 

removed. As such with the similarity between these two they will be discussed together.  In fact, 

if the cost for both is the same then they could be modelled with a single variable.  However for 

the purposes of this model it will be assumed that the costs will be different and thus a separate 

variable will be added to the objective function for each. 

Since recruitment and reductions are the permanent adding or removal of resources it is 

essentially the decision to add or reduce the available time for a particular area group for that 

period and any future periods.  Thus the first step is adding a variable to each area group within 

each period to indicate recruitment and reduction of a resource from that group during that 

period. 

The cost calculation for these variables is slightly more complex than before as aside from the flat 

cost associated with each, the cost of a resource to the plan must be added (or removed) for that 

period and all future periods. 

Looking at recruitment first, the cost just from having a new resource in the plan is going to be the 

number of periods left plus one (the additional one is for the current period).  If the periods go 

from period 1 to period T then the additional cost for hiring a resource in period t is T + 1 – t or 

the number of periods minus t.  Thus a new recruit in the last period, T, will cost 1, as the resource 

must be paid for that period. 

On top of this we add a flat real valued cost for recruitment 𝐼𝑐, so the cost to recruit 1 resource in 

period t is 𝐼𝑐 + T + 1 - t. 

Similarly for wastage/reduction, removing a resource in period t removes their cost from the plan 

for that and each subsequent period (as the cost has already been added in the constant C).  Thus, 

removing a resource in period t means a reduction in the plan cost of T + 1 - t.  Again a real valued 

flat cost for reductions is added to give an overall cost to reduce resource levels by 1 in period t 

as 𝑊𝑐 + t - T – 1. 

This gives the equation to calculate the cost of intake and wastage for area group ga in period t as: 

𝑝𝑔𝑎𝑡 = (𝐼𝑐 + 𝑇 + 1 − 𝑡)𝑖𝑔𝑎𝑡 + (𝑊𝑐 + 𝑡 − 𝑇 − 1)𝑤𝑔𝑎𝑡   (12) 
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 The new decision variables added are both integer values indicating the number of new resources 

from group g in area a have been added (igat) or reduced (wgat) in period t. Similar to overtime, we 

now need to reflect the additional and reduced time available through recruitment and reduction 

in the time available constraint.  Additional time available in period t for area group 𝑔𝑎  is given by 

summing recruitment of that group from period 1 to t minus the sum of reduction of that resource 

to date from period 1 to t.  Thus additional time available from recruitment and reduction for area 

group 𝑔𝑎 in period t is given by: 

𝑓𝑔𝑎𝑡 =  ∑ [𝑖𝑔𝑎𝑡′ − 𝑤𝑔𝑎𝑡′]

𝑡

𝑡′=1

  (13) 

This extra time needs to be applied to the base time constraint (I) and the resource overtime 

constraint (III).  In the base time constraint the extra time is simply subtracted from the left hand 

side (equivalent to adding it to the right hand side, the total time available).  In the overtime 

constraint this time has to also be multiplied by the allowed overtime proportion 𝜗.  Applying 

these to both constraints gives: 

I. ∑ [𝑥𝑔𝑎𝑠𝑡 − 𝑥𝑔𝑎𝑡
′ ]𝑆

𝑠=1 + ∑ [𝑚𝑔𝑎𝑔
𝑎′𝑡 − 𝜖𝑔

𝑎′𝑎  𝑚𝑔
𝑎′𝑔𝑎𝑡]𝐴

𝑎′=1 −  ∑ [𝑖𝑔𝑎𝑡′ −  𝑤𝑔𝑎𝑡′]𝑡
𝑡′=1 ≤

 𝜎𝑔𝑎𝑡  ∀ 𝑔, 𝑎, 𝑡 

III. 𝑥𝑔𝑎𝑡
′ −  𝜗 ∑ [𝑖𝑔𝑎𝑡′ −  𝑤𝑔𝑎𝑡′]𝑡

𝑡′=1 ≤  𝜗𝜎𝑔𝑎𝑡  ∀ 𝑔𝑎 , 𝑡 

Finally, two new constraints are added to limit the total amount of recruitment and reductions 

allowed over the course of the plan: 

V. ∑ [∑ [∑  𝑖𝑔𝑎𝑡
𝑇
𝑡=1 ]𝐴

𝑎=1 ]𝐺
𝑔=1 ≤ 𝐼 

VI. ∑ [∑ [∑ 𝑤𝑔𝑎𝑡
𝑇
𝑡=1 ]𝐴

𝑎=1 ]𝐺
𝑔=1 ≤ 𝑊 

Where I is the integer maximum amount of recruitment and W is the integer maximum amount 

of wastage allowed over the course of the plan. 

Thus after applying intake and wastage the model now looks like: 

𝑚𝑖𝑛: ∑ [∑ [∑ [ ∑ [𝜔𝑔𝑠𝑥𝑔𝑎𝑠𝑡]

𝑠∈𝑆𝑔

 + ∑ [𝑀𝑔𝑎𝑔
𝑎′ 𝑚𝑔𝑎𝑔

𝑎′𝑡]

𝑎′∈ 𝐴𝑔𝑎

+ 𝑉𝑥𝑔𝑎𝑡
′ + (𝐼𝑐 + 𝑇 + 1 − 𝑡)𝑖𝑔𝑎𝑡

𝐺

𝑔=1

𝐴

𝑎=1

𝑇

𝑡=1

+ (𝑊𝑐 + 𝑡 − 𝑇 − 1)𝑤𝑔𝑎𝑡 + 𝑐𝑔𝑎𝑡
′′′ ] ] +  ∑ 𝑘𝑗𝑡

𝐽

𝑗=1

]  (14) 
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Such that: 

I. ∑ [𝑥𝑔𝑎𝑠𝑡 − 𝑥𝑔𝑎𝑡
′ ]𝑆

𝑠=1 + ∑ [𝑚𝑔𝑎𝑔
𝑎′𝑡 − 𝜖𝑔

𝑎′𝑎  𝑚𝑔
𝑎′𝑔𝑎𝑡]𝐴

𝑎′=1 −  ∑ [𝑖𝑔𝑎𝑡′ −  𝑤𝑔𝑎𝑡′]𝑡
𝑡′=1 ≤

 𝜎𝑔𝑎𝑡  ∀ 𝑔, 𝑎, 𝑡 

II. ∑ [𝜖𝑔𝑠𝑥𝑔𝑎𝑠𝑡]𝐺
𝑔=1 −  𝐷𝑠𝑎𝑡 = 0 ∀ 𝑎, 𝑠, 𝑡 

III. 𝑥𝑔𝑎𝑡
′ −  𝜗 ∑ [𝑖𝑔𝑎𝑡′ −  𝑤𝑔𝑎𝑡′]𝑡

𝑡′=1 ≤  𝜗𝜎𝑔𝑎𝑡  ∀ 𝑔𝑎 , 𝑡 

IV. ∑ [∑ [∑ 𝑥𝑔𝑎𝑡
′𝑇

𝑡=1 ]𝐴
𝑎=1 ]𝐺

𝑔=1 ≤  𝜃 

V. ∑ [∑ [∑  𝑖𝑔𝑎𝑡
𝑇
𝑡=1 ]𝐴

𝑎=1 ]𝐺
𝑔=1 ≤ 𝐼 

VI. ∑ [∑ [∑ 𝑤𝑔𝑎𝑡
𝑇
𝑡=1 ]𝐴

𝑎=1 ]𝐺
𝑔=1 ≤ 𝑊 

Where 𝑐𝑔𝑎𝑡
′′′ is the real valued cost associated with training for area group 𝑔𝑎 in period t. 

3.3.3 Training 

The final addition to the resource costs is the training cost.  Modelling this is like a combination of 

the new area move formulation with the recruitment/reduction formulation.  For a given area 

group, 𝑔𝑎, a variable is added for each possible training movement (from that area group to a new 

area group) with an associated cost.  This variable is a natural number and indicates movement of 

a certain number of resources from that area group to the new area group within that period.  

This gives the equation for the training cost of area group 𝑔𝑎 in period t as: 

𝑐𝑔𝑎𝑡
′′′ =  ∑ 𝜈𝑔𝑔′𝜏𝑔𝑎𝑔𝑎

′ 𝑡

𝑔𝑎
′ ∈ 𝐺𝑔𝑎

′

  (15) 

Where 𝐺𝑔𝑎
′ is the set of area groups that resources from area group 𝑔𝑎 can be trained to belong 

to. The integer variable 𝜏𝑔𝑎𝑔𝑎
′ 𝑡 indicates the number of members of area group 𝑔𝑎 being trained 

to become a member of area group 𝑔𝑎
′  in period t.  It should be noted that the area, a, is 

unchanged.  Finally 𝜈𝑔𝑔′  is the real valued cost associated with training a resource of resource 

group g to group 𝑔′. 

This new addition to the equation requires further modification of the available base and overtime 

constraints to reflect the lost time for resource group 𝑔𝑎 and the gain for group 𝑔𝑎
′ .  A new 

constraint also needs to be added to limit the amount of training allowed over the plan. 

First we formulate the equation indicating the gains and losses to available time due to training 

movements.  Similar to recruitment, all training moves involving that resource from period 1 up 

to the current period, t, need to be taken into account.  Thus the change to time available for area 

group 𝑔𝑎 in period t due to training movements can be given as: 
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𝑓𝑔𝑎𝑡
′ =  ∑ [ ∑ [𝜏𝑔𝑎

′ 𝑔𝑎𝑡 −  𝜏𝑔𝑎𝑔𝑎
′ 𝑡]

𝑔𝑎
′ ∈ 𝐺𝑔𝑎

′

]

𝑡

𝑡′=1

 (16) 

This is essentially the sum of all resources trained into area group 𝑔𝑎 minus the sum of all 

resources trained out of area group 𝑔𝑎 for all periods from 1 to t.  Now similarly to the recruitment 

and reduction condition changes, this change in available time is applied to the base time 

constraint (I)and the resource overtime constraint(III) giving: 

I. ∑ [𝑥𝑔𝑎𝑠𝑡 − 𝑥𝑔𝑎𝑡
′ ]𝑆

𝑠=1 + ∑ [𝑚𝑔𝑎𝑔
𝑎′𝑡 − 𝜖𝑔

𝑎′𝑎  𝑚𝑔
𝑎′𝑔𝑎𝑡]𝐴

𝑎′=1 −  ∑ [𝑖𝑔𝑎𝑡′ −  𝑤𝑔𝑎𝑡′ +𝑡
𝑡′=1

 ∑ [𝜏𝑔𝑎
′ 𝑔𝑎𝑡 − 𝜏𝑔𝑎𝑔𝑎

′ 𝑡]𝑔𝑎
′ ∈ 𝐺𝑔𝑎

′ ] ≤  𝜎𝑔𝑎𝑡  ∀ 𝑔, 𝑎, 𝑡 

III. 𝑥𝑔𝑎𝑡
′ −  𝜗 ∑ [𝑖𝑔𝑎𝑡′ −  𝑤𝑔𝑎𝑡′ +  ∑ [𝜏𝑔𝑎

′ 𝑔𝑎𝑡 −  𝜏𝑔𝑎𝑔𝑎
′ 𝑡]𝑔𝑎

′ ∈ 𝐺𝑔𝑎
′ ]𝑡

𝑡′=1 ≤  𝜗𝜎𝑔𝑎𝑡  ∀ 𝑔𝑎, 𝑡 

Also, an additional constraint is created to limit the total allowed amount of training, giving: 

VII. ∑ [∑ [∑ [∑ 𝜏𝑔𝑎𝑔𝑎
′ 𝑡

𝑇
𝑡=1 ]𝐴

𝑎=1 ]𝐺
𝑔′=1 ]𝐺

𝑔=1 ≤  Ρ 

Where P is the integer indicating the maximum number of training movements allowed over the 

length of the plan. 

Thus, with the resource costs now all modelled, the equation now looks like: 

𝑚𝑖𝑛: ∑ [∑ [∑ [ ∑ [𝜔𝑔𝑠𝑥𝑔𝑎𝑠𝑡]

𝑠∈𝑆𝑔

 + ∑ [𝑀𝑔𝑎𝑔
𝑎′ 𝑚𝑔𝑎𝑔

𝑎′𝑡]

𝑎′∈ 𝐴𝑔𝑎

+ 𝑉𝑥𝑔𝑎𝑡
′ + (𝐼𝑐 + 𝑇 + 1 − 𝑡)𝑖𝑔𝑎𝑡

𝐺

𝑔=1

𝐴

𝑎=1

𝑇

𝑡=1

+ (𝑊𝑐 + 𝑡 − 𝑇 − 1)𝑤𝑔𝑎𝑡 + ∑ 𝜈𝑔𝑔′𝜏𝑔𝑎𝑔𝑎
′ 𝑡

𝑔𝑎
′ ∈ 𝐺𝑔𝑎

′

] ] +  ∑ 𝑘𝑗𝑡

𝐽

𝑗=1

]  (17) 

Such that: 

I. ∑ [𝑥𝑔𝑎𝑠𝑡 − 𝑥𝑔𝑎𝑡
′ ]𝑆

𝑠=1 + ∑ [𝑚𝑔𝑎𝑔
𝑎′𝑡 − 𝜖𝑔

𝑎′𝑎  𝑚𝑔
𝑎′𝑔𝑎𝑡]𝐴

𝑎′=1 −  ∑ [𝑖𝑔𝑎𝑡′ −  𝑤𝑔𝑎𝑡′ +𝑡
𝑡′=1

 ∑ [𝜏𝑔𝑎
′ 𝑔𝑎𝑡 − 𝜏𝑔𝑎𝑔𝑎

′ 𝑡]𝑔𝑎
′ ∈ 𝐺𝑔𝑎

′ ] ≤  𝜎𝑔𝑎𝑡  ∀ 𝑔, 𝑎, 𝑡 

II. ∑ [𝜖𝑔𝑠𝑥𝑔𝑎𝑠𝑡]𝐺
𝑔=1 −  𝐷𝑠𝑎𝑡 = 0 ∀ 𝑎, 𝑠, 𝑡 

III. 𝑥𝑔𝑎𝑡
′ −  𝜗 ∑ [𝑖𝑔𝑎𝑡′ −  𝑤𝑔𝑎𝑡′ +  ∑ [𝜏𝑔𝑎

′ 𝑔𝑎𝑡 −  𝜏𝑔𝑎𝑔𝑎
′ 𝑡]𝑔𝑎

′ ∈ 𝐺𝑔𝑎
′ ]𝑡′=𝑡

𝑡′=1 ≤  𝜗𝜎𝑔𝑎𝑡  ∀ 𝑔𝑎, 𝑡 

IV. ∑ [∑ [∑ 𝑥𝑔𝑎𝑡
′𝑇

𝑡=1 ]𝐴
𝑎=1 ]𝐺

𝑔=1 ≤  𝜃 

V. ∑ [∑ [∑  𝑖𝑔𝑎𝑡
𝑇
𝑡=1 ]𝐴

𝑎=1 ]𝐺
𝑔=1 ≤ 𝐼 

VI. ∑ [∑ [∑ 𝑤𝑔𝑎𝑡
𝑇
𝑡=1 ]𝐴

𝑎=1 ]𝐺
𝑔=1 ≤ 𝑊 
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VII. ∑ [∑ [∑ [∑ 𝜏𝑔𝑎𝑔𝑎
′ 𝑡

𝑇
𝑡=1 ]𝐴

𝑎=1 ]𝐺
𝑔′=1 ]𝐺

𝑔=1 ≤  Ρ 

3.4 Cost associated with tasks 𝒌𝒋𝒕 

Now we will expand the last part of the equation, the costs associated with the tasks.  First we will 

add the cost associated with not completing the task in 3.4.1.  Then in 3.4.2 we will add the costs 

for moving the tasks forwards and backwards in time, before finally adding a cost for failing to 

meet the SLA for a task in 3.4.3. 

3.4.1 Task time allocation 

The first step to modelling the cost associated with tasks is to add the variable indicating the 

decision to meet the requirements of the work stacks (tasks requiring completion).  These tasks 

have an associated skill requirement, within an area, within a given period.  They also have a task 

type and a priority level.  These factors can be used to define a related cost for not completing 

that task.  As outlined in section 3.1 the cost for completing no tasks is added as a constant to the 

model equation.  Thus as time is allocated to complete a task, the cost associated with not 

completing that task should be removed from the plan. 

The choice at this stage is whether to model each task individually, or attempt some amalgamation 

similar to the merging of resources into resource groups.  In order to attempt to keep the size of 

the eventual objective function (and thus the solving time) down, attempts are made to merge as 

many tasks as possible without losing any required data.  For example, tasks can be combined 

based on skill, area and period required that also have the same cost derived from their priority 

and type, however it may also be required to split these groups further to correctly model 

associated costs for moving that demand in time (e.g. postponing the task or bringing the work 

forwards) or even to model that some tasks can be moved and some cannot. 

For the case of the mathematical model however this does not matter.  We merely need to model 

tasks as task types.  Each type has an associated cost for non-completion.  Later in this section we 

will also add the costs for movements in time (if allowable for that type) and finally the service 

level agreement (SLA) costs.  This could be passed into the model as individual tasks, or some 

refactoring could occur beforehand to combine similar tasks into types. 

With this in mind, we can now being to build up the equation describing the costs associated with 

the tasks.  First we need to model the cost for allocating time to a task type j.  This simply involves 

adding a decision variable for each task type indicating the time allocated to it, multiplied by the 

associated cost derived from its type, priority and other factors.  This gives: 
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𝑏𝑗𝑡
′ =  −𝜑𝑗𝑦𝑗𝑎𝑡   (18) 

Here 𝑦𝑗𝑎𝑡is the real valued decision variable indicating time allocated to this task type, and 𝜑𝑗 is 

the real value cost for not completing 1 FTE (or whichever time unit is used to pass data to the 

model) of this task.  The cost is negative as the cost for not completing any of this task has already 

been added to the cost for the solution.  As time is allocated to complete tasks, the cost for not 

completing that task is subtracted.  This allows the model to contain a task priority level (it will be 

trying to complete the most costly tasks first) whilst still giving a value that is closely related to an 

actual monetary value as the final cost of any solution. 

We now need to construct the associated constraints.  The first constraint is that more time cannot 

be allocated to a task type than is required.  Thus we get a new constraint: 

VIII. 𝑦𝑗𝑎𝑡 ≤  𝜌𝑗𝑎𝑡  ∀ 𝑗, 𝑎, 𝑡 

Here 𝜌𝑗𝑎𝑡 is the real valued requirement for task type j in area a in period t.  Thus this constraint 

simply states that the time allocated to task type j be less than or equal to the time required. 

At this stage we need to also define 𝑠𝑗 as the skill required by task type j.  This is required for the 

final constraint associated with this variable, which is constraint II that links the capacity used to 

the demand met.  So far we have: 

𝐷𝑠𝑎𝑡 =  ∑ 𝑦𝑗𝑎𝑡

𝑠𝑗=𝑠

  (19) 

This means, the sum of time allocated to tasks in area a in period t where the skill required by the 

task type j is s. 

Plugging this into the constraint we began to construct in the previous section to constrain the 

time drawn from a resource for a specific skill/area/period coordinate to be equal to the time used 

for that skill/area/period by tasks we get: 

II. ∑ [𝜖𝑔𝑠𝑥𝑔𝑎𝑠𝑡]𝐺
𝑔=1 −  ∑ 𝑦𝑗𝑎𝑡𝑠𝑗=𝑠 = 0 ∀ 𝑎, 𝑠, 𝑡 

Adding this all into the model we start to get the demand costs taking shape: 
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𝑚𝑖𝑛: ∑ [∑ [∑ [ ∑ [𝜔𝑔𝑠𝑥𝑔𝑎𝑠𝑡]

𝑠∈𝑆𝑔

 + ∑ [𝑀𝑔𝑎𝑔
𝑎′ 𝑚𝑔𝑎𝑔

𝑎′𝑡]

𝑎′∈ 𝐴𝑔𝑎

+ 𝑉𝑥𝑔𝑎𝑡
′ + (𝐼𝑐 + 𝑇 + 1 − 𝑡)𝑖𝑔𝑎𝑡

𝐺

𝑔=1

𝐴

𝑎=1

𝑇

𝑡=1

+ (𝑊𝑐 + 𝑡 − 𝑇 − 1)𝑤𝑔𝑎𝑡 + ∑ 𝜈𝑔𝑔′𝜏𝑔𝑎𝑔𝑎
′ 𝑡

𝑔𝑎
′ ∈ 𝐺𝑔𝑎

′

] −  ∑ 𝜑𝑗𝑦𝑗𝑎𝑡

𝐽

𝑗=1

 ] +  ∑ 𝑘𝑗𝑡
′

𝐽

𝑗=1

]  (20) 

Such that: 

I. ∑ [𝑥𝑔𝑎𝑠𝑡 − 𝑥𝑔𝑎𝑡
′ ]𝑆

𝑠=1 + ∑ [𝑚𝑔𝑎𝑔
𝑎′𝑡 − 𝜖𝑔

𝑎′𝑎  𝑚𝑔
𝑎′𝑔𝑎𝑡]𝐴

𝑎′=1 −  ∑ [𝑖𝑔𝑎𝑡′ −  𝑤𝑔𝑎𝑡′ +𝑡
𝑡′=1

 ∑ [𝜏𝑔𝑎
′ 𝑔𝑎𝑡 − 𝜏𝑔𝑎𝑔𝑎

′ 𝑡]𝑔𝑎
′ ∈ 𝐺𝑔𝑎

′ ] ≤  𝜎𝑔𝑎𝑡  ∀ 𝑔, 𝑎, 𝑡 

II. ∑ [𝜖𝑔𝑠𝑥𝑔𝑎𝑠𝑡]𝐺
𝑔=1 −  ∑ 𝑦𝑗𝑎𝑡𝑠𝑗=𝑠 = 0 ∀ 𝑎, 𝑠, 𝑡 

III. 𝑥𝑔𝑎𝑡
′ −  𝜗 ∑ [𝑖𝑔𝑎𝑡′ −  𝑤𝑔𝑎𝑡′ +  ∑ [𝜏𝑔𝑎

′ 𝑔𝑎𝑡 −  𝜏𝑔𝑎𝑔𝑎
′ 𝑡]𝑔𝑎

′ ∈ 𝐺𝑔𝑎
′ ]𝑡′=𝑡

𝑡′=1 ≤  𝜗𝜎𝑔𝑎𝑡  ∀ 𝑔𝑎, 𝑡 

IV. ∑ [∑ [∑ 𝑥𝑔𝑎𝑡
′𝑇

𝑡=1 ]𝐴
𝑎=1 ]𝐺

𝑔=1 ≤  𝜃 

V. ∑ [∑ [∑  𝑖𝑔𝑎𝑡
𝑇
𝑡=1 ]𝐴

𝑎=1 ]𝐺
𝑔=1 ≤ 𝐼 

VI. ∑ [∑ [∑ 𝑤𝑔𝑎𝑡
𝑇
𝑡=1 ]𝐴

𝑎=1 ]𝐺
𝑔=1 ≤ 𝑊 

VII. ∑ [∑ [∑ [∑ 𝜏𝑔𝑎𝑔𝑎
′ 𝑡

𝑇
𝑡=1 ]𝐴

𝑎=1 ]𝐺
𝑔′=1 ]𝐺

𝑔=1 ≤  Ρ 

VIII. 𝑦𝑗𝑎𝑡 ≤  𝜌𝑗𝑎𝑡  ∀ 𝑗, 𝑎, 𝑡 

Where 𝑘𝑗𝑡
′  indicates the real value demand costs for task type j in period t that are still to be added 

into the model, those for demand movement and SLA costs. 

3.4.2 Demand Movement 

The next part of the model to develop is the ability to simulate demand being moved forwards or 

backwards in time.  This takes the form of postponing a task to a later period or bringing that work 

forwards to an earlier period of the plan.  In the context of this model, this takes the form of 

moving time required on a task type in an area in a period either forwards to the next period or 

backwards to the previous period.  Each of these moves will have a cost attached.    

It was decided to only model the movement of one period at a time (it is still possible to move 

multiple periods through these single steps, but it disallows the ability to attach a non-linear cost.  

E.g. moving 5 periods costs 5* the cost of moving one period, but perhaps the cost would be more 

than that) in order to keep the already large number of variables within the model from becoming 

even larger. 

To model the demand movement in this way, for each task type two new variables are added to 

the objective function.  One indicating requirement for that task being moved forwards in time 
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and the other indicating movement backwards in time.  These two variables are used to calculate 

the cost for demand movement in the following equation: 

𝑏𝑗𝑎𝑡
′′ =  𝛿𝑗𝑑𝑗𝑎𝑡 + 𝜂𝑗𝑒𝑗𝑎𝑡  (21) 

Here, 𝑒𝑗𝑎𝑡 indicates the real valued amount of time for task type j in area a moved from period t 

to the previous period, with associated real valued cost 𝜂𝑗 and similarly 𝑑𝑗𝑎𝑡 indicates the real 

valued amount of movement to the next period with its own associated real valued cost 𝛿𝑗. 

Similarly to area movements for the area groups, we need to calculate the additional (or reduction 

in) time required by task type j in area a in period t due to demand moving out and into that 

period.  This gives us an equation: 

 𝑓𝑗𝑎𝑡
′′ =  𝑒𝑗𝑎(𝑡+1) + 𝑑𝑗𝑎(𝑡−1) − 𝑑𝑗𝑎𝑡 − 𝑒𝑗𝑎𝑡  (22) 

Here we are adding the time required for this task type moved into this period from the previous 

period (𝑑𝑗𝑎(𝑡−1)) to the time moved from the next period (𝑒𝑗𝑎(𝑡+1)) and subtracting the amount 

of time requirement moved out of this period in either direction (𝑑𝑗𝑎𝑡& 𝑒𝑗𝑎𝑡).  This additional time 

is added to the requirement for this task type by subtracting it from the left side of the task time 

constraint (VIII) giving the new constraint: 

VIII. 𝑦𝑗𝑎𝑡 − 𝑒𝑗𝑎(𝑡+1) − 𝑑𝑗𝑎(𝑡−1) +  𝑑𝑗𝑎𝑡 + 𝑒𝑗𝑎𝑡  ≤  𝜌𝑗𝑎𝑡  ∀ 𝑗, 𝑎, 𝑡 

Adding these into the model we now have: 

𝑚𝑖𝑛: ∑ [∑ [∑ [ ∑ [𝜔𝑔𝑠𝑥𝑔𝑎𝑠𝑡]

𝑠∈𝑆𝑔

 + ∑ [𝑀𝑔𝑎𝑔
𝑎′ 𝑚𝑔𝑎𝑔

𝑎′𝑡]

𝑎′∈ 𝐴𝑔𝑎

+ 𝑉𝑥𝑔𝑎𝑡
′ + (𝐼𝑐 + 𝑇 + 1 − 𝑡)𝑖𝑔𝑎𝑡

𝐺

𝑔=1

𝐴

𝑎=1

𝑇

𝑡=1

+ (𝑊𝑐 + 𝑡 − 𝑇 − 1)𝑤𝑔𝑎𝑡 + ∑ 𝜈𝑔𝑔′𝜏𝑔𝑎𝑔𝑎
′ 𝑡

𝑔𝑎
′ ∈ 𝐺𝑔𝑎

′

]

+  ∑[𝛿𝑗𝑑𝑗𝑎𝑡 + 𝜂𝑗𝑒𝑗𝑎𝑡 − 𝜑𝑗𝑦𝑗𝑎𝑡]

𝐽

𝑗=1

 ] +  ∑ 𝑘𝑗𝑡
′′

𝐽

𝑗=1

]  (23) 

Such that: 

I. ∑ [𝑥𝑔𝑎𝑠𝑡 − 𝑥𝑔𝑎𝑡
′ ]𝑆

𝑠=1 + ∑ [𝑚𝑔𝑎𝑔
𝑎′𝑡 − 𝜖𝑔

𝑎′𝑎  𝑚𝑔
𝑎′𝑔𝑎𝑡]𝐴

𝑎′=1 −  ∑ [𝑖𝑔𝑎𝑡′ −  𝑤𝑔𝑎𝑡′ +𝑡
𝑡′=1

 ∑ [𝜏𝑔𝑎
′ 𝑔𝑎𝑡 − 𝜏𝑔𝑎𝑔𝑎

′ 𝑡]𝑔𝑎
′ ∈ 𝐺𝑔𝑎

′ ] ≤  𝜎𝑔𝑎𝑡  ∀ 𝑔, 𝑎, 𝑡 

II. ∑ [𝜖𝑔𝑠𝑥𝑔𝑎𝑠𝑡]𝐺
𝑔=1 −  ∑ 𝑦𝑗𝑎𝑡𝑠𝑗=𝑠 = 0 ∀ 𝑎, 𝑠, 𝑡 
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III. 𝑥𝑔𝑎𝑡
′ −  𝜗 ∑ [𝑖𝑔𝑎𝑡′ −  𝑤𝑔𝑎𝑡′ +  ∑ [𝜏𝑔𝑎

′ 𝑔𝑎𝑡 −  𝜏𝑔𝑎𝑔𝑎
′ 𝑡]𝑔𝑎

′ ∈ 𝐺𝑔𝑎
′ ]𝑡′=𝑡

𝑡′=1 ≤  𝜗𝜎𝑔𝑎𝑡  ∀ 𝑔𝑎, 𝑡 

IV. ∑ [∑ [∑ 𝑥𝑔𝑎𝑡
′𝑇

𝑡=1 ]𝐴
𝑎=1 ]𝐺

𝑔=1 ≤  𝜃 

V. ∑ [∑ [∑  𝑖𝑔𝑎𝑡
𝑇
𝑡=1 ]𝐴

𝑎=1 ]𝐺
𝑔=1 ≤ 𝐼 

VI. ∑ [∑ [∑ 𝑤𝑔𝑎𝑡
𝑇
𝑡=1 ]𝐴

𝑎=1 ]𝐺
𝑔=1 ≤ 𝑊 

VII. ∑ [∑ [∑ [∑ 𝜏𝑔𝑎𝑔𝑎
′ 𝑡

𝑇
𝑡=1 ]𝐴

𝑎=1 ]𝐺
𝑔′=1 ]𝐺

𝑔=1 ≤  Ρ 

VIII. 𝑦𝑗𝑎𝑡 − 𝑒𝑗𝑎(𝑡+1) − 𝑑𝑗𝑎(𝑡−1) +  𝑑𝑗𝑎𝑡 + 𝑒𝑗𝑎𝑡  ≤  𝜌𝑗𝑎𝑡  ∀ 𝑗, 𝑎, 𝑡 

Where 𝑘𝑗𝑡
′′ is the final real valued cost to be added to the model associated with the tasks, the cost 

of failure to meet the SLA for that task. 

 

3.4.3 SLA costs 

The final factor built into this model is the capacity for penalising the cost due to failure to meet 

the SLA for a given task.   

An SLA for a task states that y% of that task must be completed within x days of schedule. If this 

agreement is not met then a fine is levied, e.g. a large additional cost to the plan. 

In this section we will first outline a method for calculating the number of tasks failing the SLA 

target within the month using the available data before then showing how to implement SLA costs 

within the model using that method. 

3.4.3.1 SLA method 

Defining n as the real valued requirement for a task over the course of a period in this plan and m 

as the real valued capacity assigned to that task over the period.  We can then calculate the 

amount of demand for that task not being met within a day in the plan as n – m.  Thus we can say 

that the real value indicating demand unmet for that task at the end of day t (𝑅𝑡) is given by: 

𝑅𝑡 = (𝑛 − 𝑚)𝑡    

Therefore, we can say that the rollover at the end of a period of length T is given by 𝑅𝑇.  Assuming 

that demand that spills over to the next day is met first then the real value amount of demand, 𝐿𝑥 

that is x days or longer late in completion is: 

 𝐿𝑥 =  𝑅𝑇 − (𝑥 − 1)𝑚 

Thus we can calculate the proportion of tasks, F, that are taking x days or longer as: 
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𝐹 =  {
0, (𝑥 − 1)𝑚 ≤ 𝑅𝑇

𝐿𝑥

𝑛𝑇
, (𝑥 − 1)𝑚 > 𝑅𝑇  

 

So if we have an SLA to complete y% of those tasks within x days, we can check if the SLA is failing 

by checking if 𝐹 > 𝑦/100.  This allows us a simple method to estimate the number of a task that 

may be failing the SLA within a given period. 

3.4.3.2 Applying SLA to the model equation 

 

Having formulated an equation to estimate whether a task is failing its SLA within a given period 

we now need to add SLA into the model.  At first glance this doesn’t look to be possible, we are 

attempting to add a non-linear property (cost is 0 up to a certain point then suddenly becomes 

something) to a linear equation. 

There is a workaround to this problem however to allow the application of this non-linear property 

to the linear model.  The first step is to add a constraint to the model that forces the SLA to always 

be satisfied.  Thus from the above equation, we are creating a new constraint that states that 𝐹 ≤

 
𝑦

100⁄ .   Here y/100 is the proportion of that task that must be completed within the allowable 

time.  When translating this into a constraint for our model we introduce a new real valued 

variable, 𝐿𝑗, which is the proportion of task j that must be completed within the allowable time.  

This gives us: 

𝐹 ≤  𝐿𝑗  

The next step for constructing this constraint is to expand the left hand side and translate it into 

the models terms.  Expanding F from the equation that was developed in the previous section we 

know that: 𝐹 =  
(𝑛−𝑚)𝑇   − (𝑥−1)𝑚

𝑛𝑇
   

Refactoring this we get 𝐹 =  
𝑛𝑇 +  𝑚(1−𝑥−𝑇)

𝑛𝑇
 

Here T is the number of sub-periods within the period (e.g. number of days within a month if 

planning monthly).  As we are looking at a multi-period plan however we create a new variable, 

𝑇𝑡, which is the number of sub-periods within period t (e.g. the number of days in month t). 

Next we look at m.  This is the amount of this task type that are being fulfilled, from the model we 

know that the capacity applied to a task is given by the decision variable 𝑦𝑗𝑎𝑡.  Thus we simply 

replace m with 𝑦𝑗𝑎𝑡. 
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After this we look at x.  This is the number of days a task is allowed to be late.  As we are applying 

this to the model with the possibility of multiple tasks we need to replace it with a new integer 

variable, 𝑙𝑗.  This is the number of days a task of type j is allowed to be late. 

We will pause at this stage to apply these modifications to the equation as the next step is the 

most complex.  Thus we currently have: 

𝐹 =  
𝑛𝑇𝑡  +   𝑦𝑗𝑎𝑡(1 − 𝑙𝑗 − 𝑇𝑡)

𝑛𝑇𝑡
 

The final variable we need to replace is n.  This is the demand for the current task type.  The base 

demand for a task is given by the variable 𝜌𝑗𝑎𝑡.  However, we also need to take account of any 

demand that has been moved into or out of this period.  Thus we need to subtract any demand 

that is moved out (given by the variables 𝑑𝑗𝑎𝑡  & 𝑒𝑗𝑎𝑡) and add any demand that is moved into this 

period (given by the variables 𝑒𝑗𝑎(𝑡+1) & 𝑑𝑗𝑎(𝑡−1)). 

This gives us the equation 𝑛 =  𝜌𝑗𝑎𝑡 −  𝑑𝑗𝑎𝑡 −  𝑒𝑗𝑎𝑡 +  𝑒𝑗𝑎(𝑡+1) +  𝑑𝑗𝑎(𝑡−1) 

Bringing this together we get: 

𝐹 =  
𝑇𝑡(𝜌𝑗𝑎𝑡 − 𝑑𝑗𝑎𝑡 −  𝑒𝑗𝑎𝑡 + 𝑒𝑗𝑎(𝑡+1) +  𝑑𝑗𝑎(𝑡−1))  +   𝑦𝑗𝑎𝑡(1 − 𝑙𝑗 − 𝑇𝑡)

𝑇𝑡(𝜌𝑗𝑎𝑡 − 𝑑𝑗𝑎𝑡 − 𝑒𝑗𝑎𝑡 + 𝑒𝑗𝑎(𝑡+1) +  𝑑𝑗𝑎(𝑡−1)) 
 

Thus we are ready to add the constraint to the model that forces the SLA for all tasks to be met, 

giving us the new constraint: 

IX. 
𝑇𝑡(𝜌𝑗𝑎𝑡− 𝑑𝑗𝑎𝑡− 𝑒𝑗𝑎𝑡+ 𝑒𝑗𝑎(𝑡+1)+ 𝑑𝑗𝑎(𝑡−1)) +  𝑦𝑗𝑎𝑡(1−𝑙𝑗−𝑇𝑡)

𝑇𝑡(𝜌𝑗𝑎𝑡− 𝑑𝑗𝑎𝑡− 𝑒𝑗𝑎𝑡+ 𝑒𝑗𝑎(𝑡+1)+ 𝑑𝑗𝑎(𝑡−1)) 
 ≤  𝐿𝑗 

Modelling SLA is not complete however as this does not allow for the possibility of an SLA failure.  

Thus in a case where it is impossible to satisfy all of the SLA’s the model will not have a feasible 

solution. 

The final step for applying the non-linear SLA process to the linear equation is to now add a 

decision variable to the model that indicates failure of the SLA for that task.  We make this a 

Boolean choice, where the model sets 0 if it decides to pass the SLA and 1 if it decides to fail.  We 

multiply this by the cost for failing that SLA.  We then subtract the value of this decision variable 

(which will be 0 or 1) from the left hand side of the new SLA constraint.  As both the left and right 

hand side of the equation currently are proportions that range from 0 to 1, by subtracting 1 from 

the left hand side it will always be less than or equal to the right.   
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Since choosing to fail an SLA will have a high cost associated the model will attempt to set all these 

to 0.  However, if it cannot manage to fulfil the SLA constraint it can choose to set the variable to 

1 instead.  This solves the infeasible solution problem that arose when we first constructed this 

constraint. 

Choosing 𝑓𝑗𝑎𝑡 to represent the Boolean decision to fail the SLA for task j in area a in period t with 

the associated real valued cost 𝐹𝑗𝑎𝑡 we get the cost from SLA failure for a task as: 

𝑘𝑗𝑎𝑡
′′  = 𝐹𝑗𝑎𝑡𝑓𝑗𝑎𝑡   

With the new constraint modified to be: 

IX. 
𝑇𝑡(𝜌𝑗𝑎𝑡− 𝑑𝑗𝑎𝑡− 𝑒𝑗𝑎𝑡+ 𝑒𝑗𝑎(𝑡+1)+ 𝑑𝑗𝑎(𝑡−1)) +  𝑦𝑗𝑎𝑡(1−𝑙𝑗−𝑇𝑡)

𝑇𝑡(𝜌𝑗𝑎𝑡− 𝑑𝑗𝑎𝑡− 𝑒𝑗𝑎𝑡+ 𝑒𝑗𝑎(𝑡+1)+ 𝑑𝑗𝑎(𝑡−1)) 
 −  𝑓𝑗𝑎𝑡 ≤  𝐿𝑗 

Adding this into the model we now have: 

𝑚𝑖𝑛: ∑ [∑ [∑ [ ∑ [𝜔𝑔𝑠𝑥𝑔𝑎𝑠𝑡]

𝑠∈𝑆𝑔

 + ∑ [𝑀𝑔𝑎𝑔
𝑎′ 𝑚𝑔𝑎𝑔

𝑎′𝑡]

𝑎′∈ 𝐴𝑔𝑎

+ 𝑉𝑥𝑔𝑎𝑡
′ + (𝐼𝑐 + 𝑇 + 1 − 𝑡)𝑖𝑔𝑎𝑡

𝐺

𝑔=1

𝐴

𝑎=1

𝑇

𝑡=1

+ (𝑊𝑐 + 𝑡 − 𝑇 − 1)𝑤𝑔𝑎𝑡 + ∑ 𝜈𝑔𝑔′𝜏𝑔𝑎𝑔𝑎
′ 𝑡

𝑔𝑎
′ ∈ 𝐺𝑔𝑎

′

]

+  ∑[𝛿𝑗𝑑𝑗𝑎𝑡 + 𝜂𝑗𝑒𝑗𝑎𝑡 − 𝜑𝑗𝑦𝑗𝑎𝑡 +  𝐹𝑗𝑎𝑡𝑓𝑗𝑎𝑡]

𝐽

𝑗=1

 ]]  (24) 

Such that: 

I. ∑ [𝑥𝑔𝑎𝑠𝑡 − 𝑥𝑔𝑎𝑡
′ ]𝑆

𝑠=1 + ∑ [𝑚𝑔𝑎𝑔
𝑎′𝑡 − 𝜖𝑔

𝑎′𝑎  𝑚𝑔
𝑎′𝑔𝑎𝑡]𝐴

𝑎′=1 −  ∑ [𝑖𝑔𝑎𝑡′ −  𝑤𝑔𝑎𝑡′ +𝑡
𝑡′=1

 ∑ [𝜏𝑔𝑎
′ 𝑔𝑎𝑡 − 𝜏𝑔𝑎𝑔𝑎

′ 𝑡]𝑔𝑎
′ ∈ 𝐺𝑔𝑎

′ ] ≤  𝜎𝑔𝑎𝑡  ∀ 𝑔, 𝑎, 𝑡 

II. ∑ [𝜖𝑔𝑠𝑥𝑔𝑎𝑠𝑡]𝐺
𝑔=1 −  ∑ 𝑦𝑗𝑎𝑡𝑠𝑗=𝑠 = 0 ∀ 𝑎, 𝑠, 𝑡 

III. 𝑥𝑔𝑎𝑡
′ −  𝜗 ∑ [𝑖𝑔𝑎𝑡′ −  𝑤𝑔𝑎𝑡′ +  ∑ [𝜏𝑔𝑎

′ 𝑔𝑎𝑡 −  𝜏𝑔𝑎𝑔𝑎
′ 𝑡]𝑔𝑎

′ ∈ 𝐺𝑔𝑎
′ ]𝑡′=𝑡

𝑡′=1 ≤  𝜗𝜎𝑔𝑎𝑡  ∀ 𝑔𝑎, 𝑡 

IV. ∑ [∑ [∑ 𝑥𝑔𝑎𝑡
′𝑇

𝑡=1 ]𝐴
𝑎=1 ]𝐺

𝑔=1 ≤  𝜃 

V. ∑ [∑ [∑  𝑖𝑔𝑎𝑡
𝑇
𝑡=1 ]𝐴

𝑎=1 ]𝐺
𝑔=1 ≤ 𝐼 

VI. ∑ [∑ [∑ 𝑤𝑔𝑎𝑡
𝑇
𝑡=1 ]𝐴

𝑎=1 ]𝐺
𝑔=1 ≤ 𝑊 

VII. ∑ [∑ [∑ [∑ 𝜏𝑔𝑎𝑔𝑎
′ 𝑡

𝑇
𝑡=1 ]𝐴

𝑎=1 ]𝐺
𝑔′=1 ]𝐺

𝑔=1 ≤  Ρ 

VIII. 𝑦𝑗𝑎𝑡 − 𝑒𝑗𝑎(𝑡+1) − 𝑑𝑗𝑎(𝑡−1) +  𝑑𝑗𝑎𝑡 + 𝑒𝑗𝑎𝑡  ≤  𝜌𝑗𝑎𝑡  ∀ 𝑗, 𝑎, 𝑡 
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IX. 
𝑇𝑡(𝜌𝑗𝑎𝑡− 𝑑𝑗𝑎𝑡− 𝑒𝑗𝑎𝑡+ 𝑒𝑗𝑎(𝑡+1)+ 𝑑𝑗𝑎(𝑡−1)) +  𝑦𝑗𝑎𝑡(1−𝑙𝑗−𝑇𝑡)

𝑇𝑡(𝜌𝑗𝑎𝑡− 𝑑𝑗𝑎𝑡− 𝑒𝑗𝑎𝑡+ 𝑒𝑗𝑎(𝑡+1)+ 𝑑𝑗𝑎(𝑡−1)) 
 −  𝑓𝑗𝑎𝑡 ≤  𝐿𝑗 

 

3.5 Finalising Model 

In this section we add the final touches to the model.  Firstly the final constraints are added to the 

model before the model is again restated in its final state. 

3.5.1 Final Constraints 

In order to finalise the model we need to add the final constraints.  These involve setting the lower 

limit for each variable and setting each variables type. 

The first of these, setting the lower limits for each decision variable, is rather simple.  None of the 

decision variables can be negative, thus we set all of their lower limits to be zero.  This gives us 

the new constraint: 

X. 𝑥𝑔𝑎𝑠𝑡 , 𝑥𝑔𝑎𝑡
′  , 𝑚𝑔𝑎𝑔

𝑎′𝑡, 𝑑𝑗𝑎𝑡 , 𝑒𝑗𝑎𝑡, 𝑦𝑗𝑎𝑡  ≥ 0  

The final constraint required is the constraint that sets all of the variables types.  Most are real 

numbers and those are the variables already mentioned in the constraint above.  However the 

recruit, reduction and training numbers are natural (including 0), which is why they did not need 

to be mentioned in the previous constraint as they cannot be negative anyway.  Finally the 

decision to fail an SLA is a Boolean decision. 

Putting this together we get the final constraint: 

XI. 𝑥𝑔𝑎𝑠𝑡 , 𝑥𝑔𝑎𝑡
′  , 𝑚𝑔𝑎𝑔

𝑎′𝑡, 𝑑𝑗𝑎𝑡 , 𝑒𝑗𝑎𝑡, 𝑦𝑗𝑎𝑡 ∈ ℝ, 𝑟𝑔𝑎𝑡 , 𝑤𝑔𝑎𝑡 , 𝜏𝑔𝑎𝑔𝑎
′ 𝑡  ∈  ℕ0, 𝑓𝑗𝑎𝑡 ∈ {0, 1}   

3.5.2 Full Linear Model 

 

Adding these final constraints onto the model we get the final version of the model: 
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𝑚𝑖𝑛: ∑ [∑ [∑ [ ∑ [𝜔𝑔𝑠𝑥𝑔𝑎𝑠𝑡]

𝑠∈𝑆𝑔

 + ∑ [𝑀𝑔𝑎𝑔
𝑎′ 𝑚𝑔𝑎𝑔

𝑎′𝑡]

𝑎′∈ 𝐴𝑔𝑎

+ 𝑉𝑥𝑔𝑎𝑡
′ + (𝐼𝑐 + 𝑇 + 1 − 𝑡)𝑖𝑔𝑎𝑡

𝐺

𝑔=1

𝐴

𝑎=1

𝑇

𝑡=1

+ (𝑊𝑐 + 𝑡 − 𝑇 − 1)𝑤𝑔𝑎𝑡 + ∑ 𝜈𝑔𝑔′𝜏𝑔𝑎𝑔𝑎
′ 𝑡

𝑔𝑎
′ ∈ 𝐺𝑔𝑎

′

]

+  ∑[𝛿𝑗𝑑𝑗𝑎𝑡 + 𝜂𝑗𝑒𝑗𝑎𝑡 − 𝜑𝑗𝑦𝑗𝑎𝑡 +  𝐹𝑗𝑎𝑡𝑓𝑗𝑎𝑡]

𝐽

𝑗=1

 ]]  (25) 

Such that: 

I. ∑ [𝑥𝑔𝑎𝑠𝑡 − 𝑥𝑔𝑎𝑡
′ ]𝑆

𝑠=1 + ∑ [𝑚𝑔𝑎𝑔
𝑎′𝑡 − 𝜖𝑔

𝑎′𝑎  𝑚𝑔
𝑎′𝑔𝑎𝑡]𝐴

𝑎′=1 −  ∑ [𝑖𝑔𝑎𝑡′ −  𝑤𝑔𝑎𝑡′ +𝑡
𝑡′=1

 ∑ [𝜏𝑔𝑎
′ 𝑔𝑎𝑡 − 𝜏𝑔𝑎𝑔𝑎

′ 𝑡]𝑔𝑎
′ ∈ 𝐺𝑔𝑎

′ ] ≤  𝜎𝑔𝑎𝑡  ∀ 𝑔, 𝑎, 𝑡 

II. ∑ [𝜖𝑔𝑠𝑥𝑔𝑎𝑠𝑡]𝐺
𝑔=1 −  ∑ 𝑦𝑗𝑎𝑡𝑠𝑗=𝑠 = 0 ∀ 𝑎, 𝑠, 𝑡 

III. 𝑥𝑔𝑎𝑡
′ −  𝜗 ∑ [𝑖𝑔𝑎𝑡′ −  𝑤𝑔𝑎𝑡′ +  ∑ [𝜏𝑔𝑎

′ 𝑔𝑎𝑡 −  𝜏𝑔𝑎𝑔𝑎
′ 𝑡]𝑔𝑎

′ ∈ 𝐺𝑔𝑎
′ ]𝑡′=𝑡

𝑡′=1 ≤  𝜗𝜎𝑔𝑎𝑡  ∀ 𝑔𝑎, 𝑡 

IV. ∑ [∑ [∑ 𝑥𝑔𝑎𝑡
′𝑇

𝑡=1 ]𝐴
𝑎=1 ]𝐺

𝑔=1 ≤  𝜃 

V. ∑ [∑ [∑  𝑖𝑔𝑎𝑡
𝑇
𝑡=1 ]𝐴

𝑎=1 ]𝐺
𝑔=1 ≤ 𝐼 

VI. ∑ [∑ [∑ 𝑤𝑔𝑎𝑡
𝑇
𝑡=1 ]𝐴

𝑎=1 ]𝐺
𝑔=1 ≤ 𝑊 

VII. ∑ [∑ [∑ [∑ 𝜏𝑔𝑎𝑔𝑎
′ 𝑡

𝑇
𝑡=1 ]𝐴

𝑎=1 ]𝐺
𝑔′=1 ]𝐺

𝑔=1 ≤  Ρ 

VIII. 𝑦𝑗𝑎𝑡 − 𝑒𝑗𝑎(𝑡+1) − 𝑑𝑗𝑎(𝑡−1) +  𝑑𝑗𝑎𝑡 + 𝑒𝑗𝑎𝑡  ≤  𝜌𝑗𝑎𝑡  ∀ 𝑗, 𝑎, 𝑡 

IX. 
𝑇𝑡(𝜌𝑗𝑎𝑡− 𝑑𝑗𝑎𝑡− 𝑒𝑗𝑎𝑡+ 𝑒𝑗𝑎(𝑡+1)+ 𝑑𝑗𝑎(𝑡−1)) +  𝑦𝑗𝑎𝑡(1−𝑙𝑗−𝑇𝑡)

𝑇𝑡(𝜌𝑗𝑎𝑡− 𝑑𝑗𝑎𝑡− 𝑒𝑗𝑎𝑡+ 𝑒𝑗𝑎(𝑡+1)+ 𝑑𝑗𝑎(𝑡−1)) 
 −  𝑓𝑗𝑎𝑡 ≤  𝐿𝑗 

X. 𝑥𝑔𝑎𝑠𝑡 , 𝑥𝑔𝑎𝑡
′  , 𝑚𝑔𝑎𝑔

𝑎′𝑡, 𝑑𝑗𝑎𝑡 , 𝑒𝑗𝑎𝑡, 𝑦𝑗𝑎𝑡  ≥ 0  

XI. 𝑥𝑔𝑎𝑠𝑡 , 𝑥𝑔𝑎𝑡
′  , 𝑚𝑔𝑎𝑔

𝑎′𝑡, 𝑑𝑗𝑎𝑡 , 𝑒𝑗𝑎𝑡, 𝑦𝑗𝑎𝑡 ∈ ℝ, 𝑟𝑔𝑎𝑡 , 𝑤𝑔𝑎𝑡 , 𝜏𝑔𝑎𝑔𝑎
′ 𝑡  ∈  ℕ0, 𝑓𝑗𝑎𝑡 ∈ {0, 1}  

 

3.6 Problem Size Discussion 

It is clear when analysing the above problem that the complexity will scale very quickly due to the 

number of nested summations.   Further to that, even if we ignore different priority orders, the 

number of potential resource groups will increase exponentially with the number of skills.  In 

practice this is not exactly the case as some skill combinations will not exist in the workforce.  For 

example if there are many skills it is unlikely there are resources that have all or most of them.  In 

corollary it would also be unlikely that any resources had a very low number of skills.  A typical 
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area from the real world case study data defined in 1.3 where there are 13 different skills has 52 

different combinations for example.  

Some assumptions are required to calculate a rough estimate of how the problem will scale.  One 

of which relates to the number of allocation variables for resource groups time.  Each resource 

group will have a decision variable for each skill they can perform which is then multiplied by the 

number of areas and periods in the problem.  The number of skills will vary depending on the 

resource group.  Thus to get an estimate we shall multiply the resource groups by the mean 

number of skills they contain, defined as|𝑆𝑔|.  Another approximation required is for the number 

of valid areas moves for an area group.  This could be as high as A-1, e.g. they can move to any 

area other than their own.  However in practice there is usually a limitation so we will define that 

the mean number of possible area moves as |𝐴𝑔|.  Finally, the mean number of potential training 

moves is defined as |𝐺𝑔𝑎
′ |.  Using those approximations we can define an equation to calculate the 

number of decision variables, N, as: 

𝑁 = 𝑇𝐴(𝐺(|𝑆𝑔| + |𝐴𝑔| +  |𝐺𝑔𝑎
′ | + 3 ) + 4𝐽)  (26)  

It is clear to see this will become large pretty quickly as T, A, G and J increase along with the 

increase in number of resource groups caused by the number of skills increasing.  

Calculating this using the example data defined in 1.3 we have T=28 and A=52.  With 13 skills we 

can estimate the remaining variables as G = 52,  |𝑆𝑔| = 7, |𝐴𝑔| = 13, | |𝐺𝑔𝑎
′ | = 13 and J = 13.  

Assuming there that resources can travel to, on average, ¼ of the areas each, and that there is a 

potential training move to add each of the 13 skills and that there is just one task variable for each 

skill.  Calculating equation 22 with these values gives 2801344 decision variables.  Even solving for 

a single area which reduces the problem to 34944 variables proved to be too computationally 

intensive to solve within a reasonable amount of time for use in a real world scenario.  This was 

found after an initial performance test was performed using CPLEX version 12.8 with default 

settings being run in a java 1.7 application using the SCPSOLVER library as the wrapper on a 

windows 8.1 Lenovo ThinkPad P50 laptop running an intel core i7 6820HQ processor with 40GB 

of RAM. Attempts to solve the problem on this set up were not able to find a solution within the 

8 hours the experiment was run for in each case. This matches the findings in the literature as 

even just the GAP sub-problem contained within this full model cannot be solved in a reasonable 

time when using exact methods if the problem size becomes sufficiently large. 
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3.7 Conclusions 

In this chapter the tactical planning problem was defined mathematically as a mixed integer linear 

programming model.  This exercise served to formally define the problem outlined in section 1.2 

setting down the precise decision variables and constraints. 

During the model creation however it was quickly discovered that solving such a large problem all 

at once using linear programming techniques was infeasible as the solution time, particularly with 

the addition of some of the integer decision variables, was too long to be useable in a real world 

situation.   A brief investigation of a small example created by utilising only single area from the 

case study data failed to find a solution within a feasible amount of time.  The experiment was 

ended after 8 hours as by the time the solution was calculated all of the input data would already 

be out of date.  For the purposes of a useable solution to the planning problem the expectation 

would be to, at the very least, find a solution within a working day in the case where no manual 

adjustment was required. In the more realistic case however where some values may require 

tweaking through manual intervention after each run to try out multiple variations of the plan 

then it would need to complete much quicker than that.   

The remainder of this thesis now focuses on searching for a means to solve this problem within 

the real world context within a useable time frame. 
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Chapter 4 

Solving the capacity-demand allocation problem 

4.1 Introduction 

In this chapter we define the problem of matching resources and their skills to demand, as faced 

by planners in service industry organisations with large multi-skilled workforces.  Chapter 2 

showed that the overall tactical planning problem explored in this thesis could be broken down 

into two sub-problems.  These sub-problems combine to form a bi-level model where a leader is 

setting the capacity constraints for the capacity-demand allocation follower.  The problem defined 

in this chapter makes up the follower level of that overall model.  It was identified that this 

follower model contained aspects of a generalised assignment problem. Many methods have been 

used in the literature to solve this problem and in this chapter we compare a few of them to 

choose a method to use in the follower layer of the nested bi-level problem.  Of these we will be 

investigating both the linear programming and the genetic algorithm approach to solving the 

problem as these two also are known to be applicable to a level of the nested bi-level model.  

Along with this we will compare these approaches with a greedy hill climber algorithm that has 

been used to solve the capacity-demand matching problem in a practical application (Kern, et al., 

2006).  This approach is also similar to the methods a manual planner would undertake and thus 

is a good comparator for algorithm performance.  By the end of this chapter we aim to have 

selected an approach to use to solve the follower model within the wider bi-level model.  

To meet these goals the capacity-demand allocation sub problem is first defined in section 4.2.  In 

section 4.3 we define the three solution methods we will be comparing.  The genetic algorithm, 

hill climber and linear programming models.  In section 4.4 the experiments used to perform this 

comparison as described before they are analysed in section 4.5.  Finally in section 4.6 we conclude 

this chapter by selecting the algorithm to use to solve the follower model going forwards.  

4.2 The Capacity-Demand Allocation Problem 

4.2.1 Problem Description 

A large multi-skilled workforce contains a number of resources, with each resource having a 

number of skills.  Further to this, each resource has a preference level allocated to the skill they 

perform.  This value is used to indicate which skills they are better practiced at performing and is 
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a factor in producing an optimal plan. The planner should prefer to use a resource’s higher 

preference skills where possible.  Each resource has a total time available to it which requires 

allocation to the skills it can perform.  For example a particular employee may have three skills 

they can perform, skill 1, 2 and 3 with preferences of 1, 2 and 3 respectively.  On a given day they 

have 8 hours available to work.  During the allocation it would be preferable to allocate all 8 hours 

to their first choice skill however they could also be assigned some time on jobs requiring skills 2 

and 3.  This assignment to secondary and tertiary skills etc. is part of the capacity-demand 

allocation process where resources are moved to their less favoured skills to better balance the 

plan.  

The organisation also has a demand, consisting of a set of jobs requiring completion in a particular 

period.  Each job has a skill that is required to complete them, along with an amount of time that 

the job needs applied to it.  The final factor is the priority of the job.  This priority is used to ensure 

that the planner attempts to fulfil the more important jobs first.  For example there may be two 

jobs requiring completion, one requires skill one and has priority 2 needing 2 hours whereas the 

other requires skill two and has priority 1 requiring 4 hours to complete.  In this case despite 

needing more time to complete the plan would usually attempt to cover the second job first. 

The job of the planner, therefore, is to attempt to best match the time of the resources to the jobs 

making up the demand, subject to the amount of each resource available in the time period and 

what skills they can perform.   

For a manual planner however, individually matching between resources and jobs is not practical.  

For example typically in a large service company the workforce can number in the tens of 

thousands, divided into regional workgroups numbering in the hundreds.  This makes it infeasible 

to individually allocate every resource by hand.  In this case, a solution is to plan using the skill 

variances.  The variance for a skill is defined as the total time supplied for that skill from the 

resources, minus the total time required for that skill from the jobs.  A positive variance indicates 

there is over-allocation to that skill (surplus); a negative variance shows there is not enough time 

allocated to that skill (deficit).  The planner then attempts to move time from skills with a surplus 

to those with deficits to bring each variance value as close to zero as possible. 

This can be defined as the constrained optimisation problem.  

𝑚𝑖𝑛: ∑ [ ∑ 𝜔𝑟𝑠𝑥𝑟𝑠

𝑠∈𝑆𝑟

]

𝑅

𝑟=1

+ ∑[𝑝𝑗(𝑡𝑗 − 𝑦𝑗)]

𝐽

𝑗=1

+ 𝐸 ∑ 𝑧𝑠

𝑆

𝑠=1

   (27) 
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subject to: 

1. ∑ 𝑥𝑟𝑠
𝑆
𝑠=1 = 𝑇𝑟 ∀ 𝑟 

2. 𝑦𝑗 ≤ 𝑡𝑗 ∀ 𝑗 

3. ∑ 𝑥𝑟𝑠
𝑅
𝑟=1 − ∑ 𝑦𝑗𝑠𝑗=𝑠 − 𝑧𝑠 = 0 ∀ 𝑠 

4. 𝑥𝑟𝑠, 𝑦𝑗, 𝑧𝑠 ≥ 0 

5. 𝑥𝑟𝑠, 𝑦𝑗, 𝑧𝑠  ∈  ℝ 

Equation (27) defines the objective function for resource-demand matching in the single planning 

dimension of resource skills.  The equation can be broken down into three key components, 

denoted by each summation operator.   

The first component calculates the cost of the use of resources in the current plan.  The decision 

variable here, xrs, denotes the amount of time from resource r allocated to skill s.  This is multiplied 

by ωrs which is the associated cost for this resource using that skill based on the resource’s 

preference for the skill.  The set of skills a resource has is denoted by Sr, thus this component of 

the equation sums the allocation multiplied by the cost for each skill each resource has. 

The second component calculates the cost of any unmet demand.  Here yj is the decision variable, 

indicating the amount of time allocated to job j.  The other variables in this section denote the 

total time required for the job tj, and the penalty cost for not allocating enough time pj.  Thus the 

unmet-demand cost is calculated by summing the difference between the required and the 

allocated time to each job multiplied by their penalty cost. 

The final component is an additional penalty cost for over-allocation to any skills.  The decision 

variable here, zs, denotes extra time allocated to skill s that hasn’t been assigned to complete a 

job.  The cost E is the penalty factor for this over-allocation.  For the purposes of this comparison 

the cost was set to zero as there is no capacity levers available to rectify excess capacity and there 

is no penalty applied to over allocation in the comparison hill-climber algorithm. 

Valid solutions to the equation are defined by the constraints.  The first constraint (I) states that 

the total time allocated to a resource’s skills should equal the total time available to that resource 

(Tr).  Similarly, the second constraint (II) limits the amount of time applied to a job to be less than 

or equal to the time required by that job.  The third constraint (III) links the components of the 

objective function, stating that the total time for a skill supplied from the resource side must equal 

the total time used by the demand side of the resource-demand matching.  The final constraints 

(IV & V) limit the decision variables to positive real values. 
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4.3 Solution Methods 

This section outlines the methods used to solve the planning problem outlined in section 4.2.  The 

GA and linear approach have been selected as some common methods for solving both the GAP 

and follower levels of bi-level models.  As well as these we will be outlining the hill-climber used 

as a comparator to the current planning process.  The cost of the solution provided by each of 

these methods will be calculated using equation (27) to provide an equal comparison. 

4.3.1 GA 

A genetic algorithm is a metaheuristic, more specifically an evolutionary algorithm, inspired by the 

natural evolution process (Mirjalili, 2019).  It is a population based algorithm with the population 

being made up of a number of current solutions, also referred to as chromosomes.  Individual 

elements of a chromosome, reflecting the parallel with evolution, are defined as alleles or genes.  

Each population member has a fitness value indicating how good that solution is.  This is defined 

by the fitness function for the problem which takes a chromosome/solution and returns an 

associated value based on the current values of the individual alleles.   

The GA then searches the solution space by iterating though generations.  In each generation the 

population is updated through the process of selection, crossover and mutation.  During selection 

population members are selected based on their fitness value and the selection operator used to 

be the parents for the next generation.   

For each two parents selected, there is a probability that crossover will occur and two children are 

created.  Crossover is where segments of their parent’s chromosomes are swapped or merged to 

create two new solutions.  This is usually done through the random selection of one (or many) 

points at which to chop up both parent chromosomes and the resulting segments are then 

swapped alternately to give two children that are a mix of their parent’s genes.  For example in 

single point crossover if the crossover point was chosen after the second gene then the first child 

would consist of the first 2 genes from the first parent and the remaining genes from the second 

parent.   Similarly the second child would have the first 2 genes from the second parent and the 

remaining genes from the first parent. 

The final operator is the mutation operator used to model the arising of new traits.  This has a 

configured probability to occur and when it does will perform some form of random change to an 

allele in a chromosome.   
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Crossover and mutation are often seen as driving exploitation and exploration respectively during 

the algorithms search where crossover is combining solutions to drive towards local optima and 

mutation is jumping solutions around the solution space to explore for other optimal areas.  An 

additional parameter also used is called elitism, this indicates that the top x solution should always 

be carried through unchanged to the next generation and is often used to ensure good solutions 

are not lost. 

The search usually continues for a number of configured generations before returning the best 

solution (given by fitness value) or an alternative is to run until stagnation, which is where it will 

continue iterating through generations till the best solution has not improved for a certain number 

of generations. 

To solve this problem using a GA therefore we must define all of the components.  First we design 

the solution representation.  Then define the operators for use with this solution before describing 

the fitness function.  Finally we briefly outline the pseudo code for the algorithm before covering 

the implementation used for the comparison experiments.  

5.3.1.1 Solution Representation 

The chromosome for this specific problem is that defining the time allocation of resources in the 

problem to their skills. 

In order to represent an individual resource’s available time distribution a list of real values is 

used.  Each value on this list equates to the amount of time that resource spends on each skill they 

can perform (analogous to xrs in equation (27)).   The sum of these values is constrained to equal 

the time that resource has available (constraint I).   

This list of real values is an individual gene of the solution.  The entire solution is made up of a list 

of these genes, one for each resource in the problem.  Thus the chromosome is a list of vectors, 

where each vector is a resource and the values in the vector indicate the distribution of their time 

across the skills they are able to perform. 

Take, for example, a problem containing four resources.  The first can perform three different 

skills and has 8 hours available, the second can perform two different skills and has 10 hours 

available, the third can perform four skills and has twelve hours available and the fourth can 

perform two skills and has eight hours available.  A valid solution for this problem could be:  

[6.0, 2.0, 0.0], [5.0, 5.0], [3.0, 2.0, 0.0, 7.0], [1.0, 7.0] 
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Here, the first gene, [6.0, 2.0, 0.0], represents the time allocation for the first resource.  Six hours 

of their time is allocated to their first skill, two to their second and zero to their third. 

Similarly the second gene represents the time allocation for the second resource.  This resource 

has higher available time than the first resource with their time equally split with five hours for 

each skill they can perform. The same follows for the third and fourth. 

4.3.1.2 Operators 

The operators chosen for use were a uniform crossover (Spears & De Jong, 1995) with the 

tournament selection operator (Goldberg & Deb, 1991).  In uniform crossover there is an equal 

chance for each individual gene to be swapped during the crossover process. In this case the gene 

had been defined as the vector indicating an individual resource’s time allocation to their skills.  

Swapping these intact meant there was no issue with the constraint that the sum of the allocation 

to skills for a resource should equal their time available would be broken.  Thus uniform crossover 

is a good choice.   

Tournament selection involves two population members being selected at random and whichever 

has the highest fitness is selected to become a parent for the next generation.  This gives a good 

balance between selecting the fittest members whilst still having a chance to select some of the 

less fit solutions to retain some diversity. 

Due to the nature of the individual genes however, something other than the standard mutation 

operators had to be defined.  Standard mutation would have changed a single point of the solution 

causing the resource time allocation constraint to be broken. 

Three operators were thus implemented for this GA. In each case a gene is selected at random for 

mutation based on the current mutation probability.  Once selected one of the below operators 

is applied to that gene.   

The first completely re-randomises a gene (and is the same operator used when initially 

generating the gene values for the solutions in the initial population).   This more drastically 

changes a solution and this promotes exploration.  It randomly allocates the resource’s available 

time, and ensures that the generated gene is valid by ensuring all of the resource’s time is 

allocated.  Essentially a random skill that the resource can perform is selected and then a random 

amount from 0 to the resources max time remaining is chosen to be applied to that skill.  The 

amount used is then subtracted from the time available and the process continues with the skill 

already allocated removed from the potential list.  The process continues till all of the resource’s 
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time is allocated, or there is only one skill left on the list (in which case that skill is allocated all of 

the remaining time).   

 The second involves some minor modifications to the mutated distribution.  This more minor 

adjustment promotes more of an exploitation approach to gradually move towards a local optima.  

A random amount less than the max time available to that resource is subtracted from one 

randomly selected value in the gene and added to the other.  If the amount to be subtracted is 

greater than the value selected, then the value is set to zero and its previous value is added to 

another.  For example, given a gene: 

[4.0, 2.0, 0.0, 2.0] 

The random modification amount is chosen as 3.0, and the second point is chosen as the source 

with the first as the destination. 

As the second point is 2.0, subtracting 3.0 would cause it to become negative and thus an invalid 

solution.  Instead 2.0 is subtracted from the second point and added to the first, giving the 

resulting gene: 

[6.0, 0.0, 0.0, 2.0] 

In order to retain the effectiveness of this mutation in problems with longer genes the number of 

changes occurring for any given mutation is chosen randomly (with an upper limit of half the genes 

length). 

The third mutation operator is a hybrid of the first two.  For the first few generations (the number 

tuneable by the operator) the first mutation method that completely re-randomises a gene is 

performed.  After the configured number of generations the second mutation operator is 

performed instead to just perform minor modifications for the rest of the evolution.  This has the 

advantage of combining the previous two where the solutions will jump around the solution space 

more in the first x generations to explore the solution space before switching to more minor 

moves to exploit after the first x generations has passed.   

4.3.1.3 Fitness Function 

The fitness function for this genetic algorithm calculates the cost of the solution using a similar 

method to equation 22.  As mentioned in the solution representation, the GA solution provides 

the values for xrs.  To speed calculation of this portion of the equation, the fitness function contains 

an index containing the associated cost for each value in the solution (ωrs).  The fitness function 

need only multiply these together to calculate the resource portion of the cost function. 
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Unlike the linear model however, the GA does not explicitly allocate the decision variables for the 

demand side of the equation.  To calculate the cost of the unmet demand the fitness function 

splits the jobs into groups by their skill required and orders them in priority order.  The time 

allocated to each skill by the resources is applied to complete the jobs of the same skill, fulfilling 

the highest priority job first.  This provides the values for yj in equation 22. 

The values for zs are calculated as any excess time left over after all jobs of a skill are fulfilled.  As 

mentioned in section 4.2 however, for the purposes of these experiments the additional cost was 

set to zero. 

4.3.1.4 Pseudo Code 

The final part of the GA required for implementation is the decision around the stopping condition.  

As the solution complexity depends on the number of resources and possible skills in a data-set, 

then the precise number of generations required to reach a near optimal solution would vary per 

problem.  Something dynamic was required to allow the GA to run longer for larger problems or 

stop sooner on smaller ones.  The solution implemented here was to stop the evolution upon 

reaching stagnation.  This involves reaching termination when the best fitness has not improved 

for a tuneable number of generations. 

Bringing all the components together we get the GA algorithm as: 

1. Generate Initial Population; 
2. Evaluate population; 
3. Set bestSolution = solution with best fitness; 
4. Set Stagnation Generations = 0; 
5. While (stagnation generations < termination limit) { 
6.  Select population for breeding; 
7.  Perform crossover on selected population; 
8.  Perform mutation on new children; 
9.  Evaluate population; 
10.  If (current best solution has better fitness than best solution) { 
11.   Stagnation Generations = 0; 
12.   Best solution = current best; 
13.  } 
14.  Else { 
15.   Stagnation Generations++; 
16.  } 
17. } 
18. Return best solution; 

  

4.3.1.5 GA Implementation 

The previously described GA was implemented in Java 1.7 making use of the Watchmaker 

framework (Dyer, 2010).  Java was utilised as this was a requirement from the industrial partner 

who at the time did the majority of their development within Java.   The Watchmaker framework 
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was chosen to implement the GA as it brought with it the benefits of optimised code to give 

improved performance, including parallelisation across multiple cores,  whilst being configurable 

enough to allow the implementation of any fitness function, solution encoding, mutation, 

selection and crossover operators that might be required.  

After some initial test runs to tune the parameters the crossover probability was set to 0.6 with a 

mutation probability of 0.02.  This was found to give a good balance between exploration and 

exploitation for the search.  The mutation was set to perform re-randomisation for the first 500 

generations then use the gene modification method thereafter to further promote exploration 

early in the search before focussing more on exploitation in the latter phases.  Population size was 

chosen as 250 being around 1.5 times the length of the solution to give a good spread across the 

search space at the start, as well as with an elitism value of 3 to ensure the best solutions were 

retained for future generations.  The algorithm was set to terminate after reaching stagnation for 

100 generations rather than run for a specific number of generations to give a chance to converge 

to an optimal in both more complex and simple search scenarios. 

4.3.2 Greedy Hill-Climber Heuristic 

To provide some real world comparisons, we also solve the problem instances using a method 

currently utilised in the real world planning process (Owusu, et al., 2006).  

 The first step assigns all of a resource’s available time to their primary (most preferred) skill.  This 

is analogous with how the data is usually first represented in a planning application, before any 

manual (or otherwise) planning is performed. 

The second step applies a simple rule based optimisation to attempt to move surplus time 

allocated to one skill to any skills with deficits where possible.  The rule attempts to move time to 

the highest priority skills first.  All the skills where there is a surplus are iterated through from that 

with the highest deficit to the lowest.  Some of the applied time is then attempted to be moved 

to the highest priority skill with a deficit.  To do so each resource currently applying time to the 

surplus skill is iterated through in the order of preference for the deficit skill (with those that 

cannot perform the deficit skill ignored) and the amount of time applied to the surplus skill (where 

preference is equal).  Their allocation is then updated to move time to the deficit skill till either all 

the resource’s available time is moved, the current surplus skill is no longer in surplus, or the 

current deficit skill is no longer in deficit.  The process continues till all surplus skills have been 

checked for potential moves. This is essentially the heuristic used when performing manual 

planning so acts as a good comparator for the current process.   
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4.3.3 Linear Program  

The constrained optimisation problem defined in section 2 was also solved using CPLEX (Bliek, et 

al., 2014).  CPLEX was chosen as a state of the art commercial solver with the availability of an 

academic license allowing use for experiments.  Due to the requirements of the industrial partner 

to develop within java, the model was implemented in java 1.7 using SCPSolver (Planatscher & 

Schober, 2015) to interface between Java and CPLEX solver version 12.8. The use of SCPSolver was 

required as a wrapper around CPLEX since it is C based thus requires a wrapper to function in a 

java application.  SCPSolver itself was chosen as it also included the ability to plug in two different 

open source solvers instead of CPLEX without the need to change any of the java code defining 

the model.  This was seen as an advantage since due to the required licenses it may not be possible 

to use CPLEX when deploying the model within an application.  The disadvantage of the wrapper 

approach was less easy access to CPLEX parameters thus the default settings were used, though 

these were found to perform adequately for the purpose of this experiment.  Solving using CPLEX 

is an exact method so will provide the optimal solution, however it was seen to have poor 

scalability in chapter 3 when applied to the tactical planning problem.  However, for the purposes 

of this sub-problem, it was chosen to test the computational performance vs the GA as the 

problem size is substantially smaller.  If it performs better while providing the optimal solution 

then it will be a good candidate to use to solve the follower level of the bi-level problem. 

4.4 Experiments 

In this section we define the experiments to perform a comparison between the methods outlined 

in section 4.3.  First we outline the motivation for the experiments before explaining the method 

used. 

4.4.1 Motivation 

The purpose of the experiments conducted was to provide an effective comparison between the 

formulated GA, the linear approach and the simple planner’s heuristic used by current planners.  

The objective being to discover which approach provides the best option to use as the follower in 

the tactical planning bi-level model.    

To analyse the relative effectiveness of each method, we look both at some skill variance graphs 

to analyse the allocation of time to each skill as well as looking at the overall cost of the solutions 

produced. 
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4.4.2 Experimental Method 

At this stage the real world data was not yet available.  As such a logic was built to generate 

randomised data for a specified number of skills, resources and work-stacks (jobs).  The specified 

number of skills were created then the specified number of resources and workstacks.   

Each generated resource was allocated a random number of skills (each with an associated 

preference) and a random amount of time available.  First a random skill from the full skill list is 

selected to add as the resource’s primary skill with an even chance of selecting any skill. Then for 

each remaining skill the resource selected a random Boolean, if true the skill was added and if not 

the skill was not.  Thus there was a 50% chance to be able to perform each additional skill.  For 

each skill added the resource rolled a random number between 1 and 3 to be used as their 

preference value for that skill. This roughly matched real data where it was observed that most 

resources could perform on average just over half of the available skills. The resource was then 

allocated an amount of time randomly between 0 and 10 for each period in the plan by rolling a 

random double between 0 and 1 and multiplying that by 10.  

 Each work-stack was generated to require a random skill, require a random amount of time and 

was allocated a random priority level.  The skill was selected randomly from the list with an even 

chance of selecting any.  Priority level was randomly rolled between 1 and 6.  For the time required 

a base calculation as performed of 10 * the number of resources / the number of workstacks.  

Then a random number between 0 and 1 was rolled for each period in the plan and multiplied by 

that base calculation to give the time required for each period.   

The range for possible values of time available to a resource and time required by jobs were thus 

set such that selecting the mean in all cases would produce a data-set where the total time 

available equalled the total time required.  This creates a situation where there is a workforce that 

generally matches the demand, the job of the planner is simply to perform the skill matching 

between the two. 

This logic was used to generate 12 separate data-sets, each with 50 resources, 10 skills and 200 

work-stacks, to simulate a typical planning situation for a service company (Voudouris, et al., 

2008).   

Each of the methods outlined in section 3 was used to solve the planning problems arising from 

the resulting data-sets.  As the genetic algorithm is non-deterministic the model was run for 100 

repetitions on each of those 12 problems and the mean results noted.  The alternate methods 

were all deterministic and thus only run once per problem. 
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As well as the optimisation methods, a 4th dataset was produced to show the results of simply 

allocating all of the time to each resources’ primary skills.  This was to provide a baseline solution. 

The experiments were run on the same set up as that used in chapter 3, on a windows 8.1 Lenovo 

ThinkPad P50 laptop running an Intel core i7 6820HQ processor with 40GB of RAM.  Java 1.7 was 

used for all the methods with Watchmaker version 0.7.1 used to implement the GA and CPLEX 

version 12.8 with default settings running within the SCPSOLVER (no version number) library as 

the wrapper used to solve the linear program. 

4.5 Results 

Here we present the results of the comparison experiments.  First we look at the graph showing 

the costs of the solutions produced by each method in each problem.  After that we select a few 

typical examples of skill variance graphs showing a few different situations to illustrate how each 

handles the allocation of resource skills to the required demand. 

4.5.1 Solution Cost 

 

Fig. 3  Solution costs 

 

Fig. 3 shows the cost values achieved by using equation (27) to evaluate the solutions.  In this case 

the lower the value the better the solution.  The graph shows that the GA approach is producing 

lower cost solutions than the simple planner in all cases with an average cost across the 12 

instances of 267.76 compared to 323.66.  The linear model does slightly outperform the GA 
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however with an average cost of only 266.  The GA does match the linear model in 3 of the 12 

instances, with the linear model slightly lower cost in the remaining 9. 

4.5.2 Skill Variances 

In this section we pick out a few representative skill variance graphs highlighting some of the 

common behaviours seen in the results data.   

 

Fig. 4 Typical Variance Improvement 

 

Fig. 4 shows a typical looking variance curve; in this case we are looking at the values for skill 8 

across the 12 problems.  In all cases the optimisation methods reach values the same as or closer 

to zero than the base solution.  Most methods have managed to get close to zero in all the 

problems; the simple planner heuristic however shows some under-allocation in problem 6. 
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Fig. 5 Higher Variance than Simple Planner in Problem 8 

 

Fig.5 shows a less typical variance graph.  This graph is chosen as it highlights a case where the GA 

has produced a higher variance than the simple planner heuristic in problem 8.  The rest of the 

problems produced typical results however. 

 

Fig. 6 Lower Variance than Simple Planner in Problem 8 

 

Fig. 6 shows the balancing value for figure 3 in problem 8.  Here in problem 8 it is the simple 

planner heuristic that has over-allocated while the GA has reached a balanced allocation.  The rest 

of the graph shows typical values, with the GA generally producing similar or better variance than 

the simple planner heuristic. 
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4.5.3 Solution Run Time 

The final result recorded from these experiments was the average time taken to produce a 

solution by the GA vs. CPLEX.  The GA took an average of 0.322 seconds to complete over the 100 

repetitions whereas CPLEX was only taking on average 0.012 seconds to complete.  This is almost 

a factor of 27 quicker and shows that for the capacity-demand sub problem the size is not so large 

yet as to cause problems seen in chapter 2 for the run time of the linear approach. 

4.5.4 Analysis 

The results of the tests show a significant improvement in using the GA model over current simple 

planning practices, as can be seen in fig. 3.  The GA produces a lower cost solution in all cases.  

Further illustrated by the same graph is that the GA also performs comparably to CPLEX, reaching 

optimal or near optimal in all cases. 

The one case where the GA produces a worse skill variance, comparatively to the simple planner 

heuristic, for skill 1 in problem 8 (figure 3), is balanced by a better variance for skill 6 (figure 4).  

The differing decisions producing a lower cost for the GA solution, as seen in figure 1. 

The likely reason for the cost reduction is that the simple planner has a tendency to become stuck 

within local optima.  This is a side effect of starting from an initial point before making moves to 

improve the solution.  A GA, in comparison, performs a more robust exploration of the solution 

space. 

Furthermore, although we can see that the GA is close to the optimal solution in most cases, the 

run time is still longer than using the linear approach for this sub-problem as it is not yet large 

enough to start causing the large increases in run time observed when looking at the full tactical 

planning problem. 

4.6 Conclusions 

In this chapter the capacity-demand allocation problem, the follower portion of the nested bi-

level formulation of the tactical planning problem, has been defined and explored.  Three methods 

to find solutions to the problem were compared.  Two typical examples of methods to solve similar 

problems, a GA and linear programming model, were chosen.  The final model was a greedy hill 

climber algorithm currently applied to solve this problem in a real world planning application. 

It was shown that this GA produces superior results to the simple planner heuristic, providing a 

lower cost solution in all problems they were applied to.  However, although it was demonstrated 
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that the GA presented produces near optimal solutions in all the test problems it does, in these 

experiments, take almost 27 times as long to do so.  This proves the GA is potentially a strong 

alternative to the badly scaling linear programming approach for the overall problem but that for 

solving this sub-problem the linear programming approach should be used. 
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Chapter 5 

Solving a Subset of the Tactical Planning Problem 

using a Bi-Level Model 

5.1 Introduction 

Following the work in chapter 4 to identify a suitable solution method for the capacity-demand 

matching follower, in this chapter we introduce the leader model to create the nested bi-level 

model.  We continue limiting the model to a single area, which reflects how manual planners 

operate, however the period dimension is introduced.  As such the capacity-demand allocation 

model is extended to add the modelling of rollover of incomplete tasks to the next period as well 

as introducing the installation selling lever from the tactical planning problem.  To create the bi-

level model a representative subset of the capacity decisions are also chosen to be implemented 

as the leader model.  The three levers chosen generally cover key capacity decisions.  Overtime 

models modifying capacity available to resources, contractors model the application of external 

capacity and reductions models the movement of whole resources.  These levers available to the 

leader will set the capacity constraints for the follower model to then attempt to minimise missed 

fault tasks whilst creating installation appointment availabilities.  The overall cost is then that of 

the used capacity levers combined with the results of the follower models allocation. 

As chapter 4 showed the linear model to be the superior choice for the demand-allocation 

problem it is chosen to solve the follower model here.  Chapter 2 showed that nested bi-level 

models tend to use metaheuristics for the leader model.  Given the performance seen by the GA 

at solving the demand-allocation problem it was chosen as the metaheuristic to be applied to the 

leader portion of the problem here. 

For this chapter the case study data outlined in 1.3 is also used and the results of the bi-level 

solutions compared with the actual decisions of the real world planners.   

In section 5.2 the Bi-Level model used to solve this problem is defined, both the leader and 

follower portions.  Section 5.3 then covers the results of some experiments performed using this 

model on some real world data where the resulting outputs are compared with the actual 

decisions taken by the planners at the time, before the chapter concludes in section 5.4.     
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5.2 Bi-Level Model 

In this section the bi-level model used to solve the subset of the tactical planning problem is 

specified.  A nested model, as seen in chapter 2, is defined.  First the general structure is defined, 

followed by detailed descriptions of the leader and follower models.  Finally, the model 

configuration used to achieve the required behaviour is outlined. 

5.2.1 General Structure 

To recap, the general structure of a bi-level model is given by the equation:   

   

(28)  

 

Here F(x,y) is the leader model with the associated constraints G(x,y), similarly f(x, z) denotes the 

follower model with the associated constraints of g(x,z).  In the case of the model developed in 

this chapter, to solve the tactical planning problem, the leader model’s decision variables, x, are 

not included in the fitness function of the follower model.  Instead they only affect the constraints 

for the follower model.  Thus, for the purposes of this model, the follower model’s fitness function 

can be simplified to f(z).  The leader and follower models for this solution are described in sections 

5.2.2 and 5.2.3 respectively. 

5.2.2 Leader Model 

The leader model controls the capacity levers that set the constraints for the follower model.  

These encompass the following decision variables  

1. Overtime - applied to each resource  

2. Contractors - Number of contractors applied to each skill  

3. Reduction - Number of resources to remove from the plan 

Each of these variables require an entry for each period in the plan.  To solve the leader level of 

the problem a genetic algorithm was used, a detailed description of a GA can be found in section 

4.3.1.  A GA was selected as the literature showed meta-heuristics are generally used for this level 

when taking the nested approach to solving a bi-level model.  The GA being specifically selected 

as a common example of a meta-heuristic used that has been shown to be effective in this field 
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already in chapter 4 whilst also being applicable in a practically deployed application in java (as 

required by the industrial partner) using the watchmaker framework.  The following sub-sections 

of this chapter describe the problem specific components of the GA such as the chromosome 

structure, followed by the constraints applied to the problem, the evolution methods selected and 

finally the fitness function.  

5.2.2.1 Chromosome Structure 

Fig. 7 shows the structure of a solution to the leader model.  The chromosome is split into three 

main sections that define the decisions for contractors, overtime and reductions in the plan similar 

to the multi-section approach demonstrated in chapter 4.  Within the contractor section there is 

an allele, Cn, for each of the N skills contractors can be applied to.  For overtime and reductions 

there are alleles Om and Rm respectively for each of the M resources in the plan.  Each allele is a 

list of values, Pt, for each of the T periods in the plan that represent the value for that allele in that 

plan period.  The values within the contractor and overtime alleles were all positive real numbers 

with the values in the reductions being natural. For example, if the value of P1 for the allele O2 is 

3.5 then that indicates that resource 2 has been allocated 3.5 additional overtime (in whatever 

unit the model inputs used, typically FTE) in the first period of the plan. 

Decoding the chromosome then gives the amount of overtime and reductions applied to each 

resource on each period of the plan along with the amount of completions allocated to contractors 

on each day of the plan.  This modifies the available capacity, thus changing the capacity 

constraints in the follower model.  

 

An example chromosome for a simple problem with 2 skills and 2 resources with 2 periods in the 

plan would look like this: 

  [ [2,1], [0,3] ],   [ [4.1,1.4], [0.2,5.2] ],   [ [4,5], [6,7] ] 

The first section with [2,1] and [0,3] indicating the completions given to contractors for skills 1 and 

2 respectively.  With 2 being allocated to skill1 in period1, and 1 being allocated to skill1 in period 

2.  Then the 0 and 3 are allocated to skill2 in periods 1 and 2 respectively.  The second section 

Fig. 7 Leader Model Solution Chromosome 
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indicating time allocated to resources 1 and 2 in each period.  With [4.1,1.4] being time overtime 

allocated to resource group 1 in periods 1 and 2 respectively and [0.2,5.2] being overtime applied 

to resource group 2.  Finally the last section indicates removal of resources from resource group 

1, [4,5], in periods 1 and 2 respectively and similarly from resource group 2 ([6,7]). 

5.2.2.2 Leader Model Constraints 

Constraints applied to the leader model were of two types, the first to set the budget for the 

solution and the second to ensure correct behaviour of the model.  We define the set of decision 

variables for the follower model as Y.  Within the leader model we define the following decision 

variables. 𝑐𝑛𝑡 denotes the number of contractors applied to skill n in period t.  Overtime and 

reductions applied to resource m in period t are defined as 𝑜𝑚𝑡 and 𝑟𝑚𝑡  respectively.  If we further 

define the variable 𝑚𝑡 as the amount of time available for resource m in period t then the leader 

portion of the problem can be defined with its constraints as: 

 𝑚𝑖𝑛: 𝐹(𝑐, 𝑜, 𝑟, 𝑦) 𝑓𝑜𝑟 𝑐𝐶, 𝑜𝑂, 𝑟𝑅, 𝑦𝑌     (29) 

subject to: 

1. ∑ [∑ 𝑐𝑛𝑡
𝑁
𝑛=1 ]𝑇

𝑡=1  ≤ 𝐶𝑏 

2. ∑ ∑ 𝑜𝑚𝑡 ≤ 𝑂𝑏
𝑀
𝑚=1

𝑇
𝑡=1  

3. ∑ 𝑟𝑚𝑡
𝑀
𝑚=1 ≤  𝑅𝑏∀ 𝑡 ∈ 𝑇 

4. 𝑜𝑚𝑡  ≤ 𝑂𝑥  ∀ 𝑚 ∈ 𝑀, 𝑡 ∈ 𝑇 

5. 𝑜𝑚𝑡 + 𝑚𝑡  ≤  𝑥  ∀ 𝑚  𝑀, 𝑡  𝑇 

The first three constraints for (29) are budget constraints which are simply the maximum allowed 

contractors, 𝐶𝑏 overtime, 𝑂𝑏 and reductions, 𝑅𝑏, allowed within the plan.  For contractors and 

overtime, this just sets the maximum total values that could be applied to each of the solution 

sections.  Reductions maximum was slightly different in that it was applied to each specific period 

of the plan, e.g. a value of 5 for the maximum reductions constraint means that on each period of 

the plan there cannot be more than a total of 5 reductions applied across all of the M resources. 

The remaining constraints were to keep the solutions within the feasible bounds for a plan 

solution.  These were constraints to the maximum amount of overtime that could be applied to 

one resource in a period,𝑂𝑥, and the maximum total time a resource could have in a period, 𝑥.  

The latter is there to ensure that if a resource already has 8 hours available time on a given day 
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and the max they can work in a day is 10 hours, the model won’t allocate more than 2 hours 

overtime to that resource in that day. 

5.2.2.3 Evolution Methods 

  The GA uses tournament selection (Goldberg & Deb, 1991) to select the parents for subsequent 

generations chosen as a standard selection operator that gives a good mix of selecting the best 

current solutions whilst still keeping some lower fitness members for diversity of the population.  

In tournament selection parents are selected for the subsequent generation by randomly picking 

two members from the current population and whichever of those has the higher fitness value is 

selected.  

Mutation chance is configured separately for each of the 3 sections of the chromosome to give 

individual control to each sections exploration rate.  Mutation operator used causes a random 

single value to be increased or decreased by a proportion of the current value for the contractor 

or overtime sections, with the proportion randomly chosen from a Gaussian distribution with 

mean 0 and standard deviation of 0.333.  A random Boolean is selected to decide if that mutation 

will be an increase or decrease then the value is modified by adding or subtracting the Gaussian 

value times the current value.  For the reductions section, a mutation just increases or decreases 

the reduction amount for that resource in that period by 1.  All of the mutations are restricted to 

only allow solutions that will meet the model constraints.  If a solution is mutated then a check 

and repair process is performed that will modify the solution to ensure it remains within the valid 

solution space if required.  It does this by proportionally reducing all of the alleles associated with 

that lever to bring them back within the max constraint.  For example if the total overtime is 11 

but the max allowed is 10 then every overtime allele value is multiplied by 10/11. 

Crossover is performed using a multi-point crossover process with a configurable number of 

crossover points and probability of occurring to allow control over the exploitation rate of the 

algorithm.  Crossover is allowed to occur within sections as well as between sections, however 

crossover that splits a section will go through the same check and repair process applied after 

mutation to ensure that the max constraint for that section is not broken.  Thus some random 

points on the chromosome are selected and the alternating sections created by these points are 

swapped between the parents to create the two new child solutions. 

5.2.2.4 Fitness Function 

The fitness of a solution is calculated based on the cost of the budget use by the leader solution 

plus the cost achieved by the follower model with those capacity constraints.  If the cost for 
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contractors, overtime and reductions use are defined as 𝑐 , 𝑜  and 𝑟  respectively and the cost 

for the follower model is given by f(z) where z  Y is the optimal solution of the follower model 

for the current leader solution then the fitness function can be given as:  

 𝐹(𝑐, 𝑜, 𝑟, 𝑧) = ∑ [∑ [𝑐𝑐𝑛𝑡] + ∑ [𝑜𝑜𝑚𝑡 +  𝑟𝑟𝑚𝑡]𝑀
𝑚=1

𝑁
𝑛=1 ] + 𝑓(𝑧)𝑇

𝑡=1      (30) 

5.2.3 Follower Model 

The follower model matches the available capacity to the demand, attempting to meet the 

workstacks targets.  The matching occurs across the dimensions of skill and time, with the 

available time for each resource in each period allocated to the skills they can perform to complete 

jobs in the workstacks associated with those skills.  The model is chosen to be built using linear 

programming as it is both an approach used in the literature and performed well on this problem 

in chapter 4.  Here we first describe the linear formulation of this problem before expanding on 

the methods used to optimise towards the target workstack levels. 

5.2.3.1 Linear Model Formulation 

With the addition of the installation job selling lever, the decision variables to indicate job 

completions are now split into those that are fault jobs and those that are installation jobs.  

Installation jobs are further subdivided into target jobs and additional jobs to model the non-linear 

nature of that process.  Installation jobs up to target levels getting greater reward with then a 

much smaller reward for any additional installation jobs applied.  Additionally there are extra 

decision variables associated with fault jobs that indicate any incomplete jobs rolling over to the 

next period in the plan.  These are also split into target and additional to allow modelling of 

targeting to complete a specific percentage of fault jobs on a given day.  This is expanded on in 

5.2.3.2 however first we expand Y, defining the follower decision variables as a, d, d’, d’’, L and E.  

Here,  

amst is the allocation of time for resource m to skill s in period t, 

dst is the completion of a fault job requiring skill s in period t,  

d’st is the completion of a target installation jobs for skill s in period t,  

d’’st is completion of an additional installation job for skill s in period t,  

Lst is the rollover of target fault completions for skill s to period t+1  

Est is the rollover of the remainder of the fault workstack for skill s to period t+1.   
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The mechanics for the workstack rollovers and target installation completions will be explained in 

the next sub-section.  With these decision variables defined, we can now specify the follower 

model mathematically as: 

   

(31) 

 

subject to: 

1. ∑ 𝑎𝑚𝑠𝑡 ≤  𝑜𝑚𝑡 +  𝑚𝑡 ∀ 𝑚, 𝑡𝑆
𝑠=1  

2. ∑ [𝑝𝑚𝑠𝑡𝑎𝑚𝑠𝑡]𝑀
𝑚=1 −  𝑑𝑠𝑡 = 0 ∀ 𝑡 ∈ 𝑇, 𝑠 ∈  𝑆𝑓 

3. ∑ [𝑝𝑚𝑠𝑡𝑎𝑚𝑠𝑡]𝑀
𝑚=1 −  𝑑𝑠𝑡

′ −  𝑑𝑠𝑡
′′ =  0 ∀ 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆𝑖 

4. 𝑑𝑠𝑡 + 𝐿𝑠𝑡 +  𝐸𝑠𝑡 −  𝐿𝑠(𝑡−1) −  𝐸𝑠(𝑡−1) =  𝐼𝑠(𝑡−1) ∀ 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆𝑓 

5. 𝐸𝑠𝑡 + (𝑠𝑡 − 1)𝐸𝑠(𝑡−1)  ≤  (1 − 𝑠𝑡)𝐼𝑠(𝑡−1) ∀𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆𝑓 

6. 𝐿𝑠𝑡 −  𝐿𝑠(𝑡−1) −  𝑠𝑡𝐸𝑠(𝑡−1)  ≤  𝑠𝑡𝐼𝑠(𝑡−1) ∀ 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆𝑓 

7. 𝑑𝑠𝑡 − 𝑠𝑡𝐿𝑠(𝑡−1) − 𝑠𝑡𝐸𝑠(𝑡−1)  ≤  𝑠𝑡𝐼𝑠(𝑡−1) ∀ 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆𝑓 

8. 𝑑𝑠𝑡
′ ≤ 𝑠𝑡∀ 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆𝑖   

9. (𝑑𝑠𝑡
′ + 𝑑𝑠𝑡

′′ ), 𝑑𝑠𝑡 ≥  𝑑𝑠𝑡
𝑚𝑖𝑛 ∀𝑡, 𝑠 

10. 𝑎𝑚𝑠𝑡 , 𝐿𝑠𝑡 , 𝑑𝑠𝑡
′ , 𝑑𝑠𝑡

′′ , 𝐸𝑠𝑡  ≥ 0 ∀ 𝑡, 𝑠, 𝑚 
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The weight variables 𝜔𝑚, 𝜔𝑙𝑡, 𝜔𝑓,𝜔𝑝and 𝜔𝑎𝑝 are the costs and benefits for using resource time, 

rolling over target fault completions, completing faults jobs, completing installation tasks up to 

the installation target and completing additional installation tasks respectively.  The final cost 

variable  is a zero cost that is attached to rolling over of additional fault jobs beyond the target.  

There is no penalty to rolling over the additional jobs so a zero cost is applied but the decision 

variable is still required as these need to propagate through the periods of the plan still. 

 

The constraints for (31) ensure a valid planning solution is produced and set the skill matching and 

completion targets behaviour.  The 1st constraint simply states that the max amount of time used 

for each resource m in period t across all their skills should be less than or equal to the total time 

they have available as set by their base time, mt, plus any addition overtime, omt, applied by the 

leader model.  The second and third constraints state that the total number of completions by 

resources of a skill, given by the time applied to that skill, amst, multiplied by the number of jobs 

of that skill they can complete per unit of time applied (the productivity pmst), must equal the total 

number of completions assigned to that skills workstack. This is dst in the case of a fault skill (𝑆𝑓) 

or d’st + d’’st in the case of an installation skill (𝑆𝑖).  Constraint 4 introduces a new quantity, Is(t-1), 

which is the intake of new fault jobs on period t-1.  For the first period of the plan this value would 

be the starting backlog.  Constraint 4 is stating that all jobs must be accounted for, either by being 

completed or by being rolled over to the next period through Lst and Est.  The rollover from the 

previous period is also taken into account in this constraint, ensuring the backlog correctly 

propagates through the model.  The 5th and 6th constraints enforce the fault completions target 

mechanic by aiming to complete a proportion of the start of day backlog for each skill in each 

period. This is defined as st.  The mechanics for this are explained in the next sub-section.  

Fig. 8 Fault Workstack Propagation in the Linear 

Model 
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The 7th constraint is an additional constraint on fault completions which states that only a certain 

proportion of the start of day backlog for each skill in each period can be completed, defined by 

st.  The 8th constraint also uses the st quantity, however in the context of an installation skill, this 

is the target number of jobs the model should aim to do for installation in each period of the plan.  

The final two constraints set a minimum number of completions for each skill in each period, dmin
st, 

and also forbid any decision variables from being negative.  

5.2.3.2 Optimising towards target levels 

  A key problem to solve when defining the follower as a linear model was how to replicate the 

non-linear behaviour caused by planning to target workstack levels.  When the backlog is too high 

(above the target level), a planner puts extra resource time into that skill (if possible) to increase 

the number of completions and bring the backlog lower.  However, once the target backlog level 

is met, the skill will suddenly become a lower priority.  This two-stage behaviour was captured in 

the model by splitting the fault workstacks backlog into two portions in each period of the plan. 

The first is the proportion that should be completed in that period for that skill to meet the target, 

st, and second is the remainder.  Constraints 5 and 6 of (31) encode this behaviour into the linear 

model. 

Fig. 8 shows a graphical representation of how these constraints, along with the L and E decision 

variables that represent the rollover of jobs above and below the target level respectively, cause 

the required behaviour.  In the first plan day, the backlog is split into two portions. First one 

represented by 𝐿𝑠1
𝑚𝑎𝑥 is the target number of completions for skill s in the first period, defined as: 

  𝐿𝑠1
𝑚𝑎𝑥 =  𝑠1 ∗ 𝐵𝑎𝑐𝑘𝑙𝑜𝑔   (32) 

The remainder of the backlog is represented by 𝐸𝑠1
𝑚𝑎𝑥. These two variables represent the 

maximum values possible for the two rollover variables Ls1 and Es1 respectively.  The value of the 

decision variable ds1 sets the number of completions performed for skill s in the first period, which 

are first taken from the amount of rollover of jobs above the target represented by Ls1.  In the first 

period in Fig. 2, this value is less than the max rollover for jobs above the target level. Therefore, 

some jobs above the target level and all the jobs below the target level roll over to the next period.  

For the next day the target completions are all the target completions from the previous period. 

In this case it is Ls1, plus the portion of the backlog to complete this period.  For period n the 

backlog is the rollover of jobs below the target level, 𝐸𝑠(𝑛−1)) which in this case is Es1, plus the 

intake of new jobs from the previous period, 𝐼𝑠(𝑛−1) which in this example is Is1.  The backlog is 
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then split in the same way as previously described to give the target completions for this period 

of: 

 𝐿𝑠𝑛
𝑚𝑎𝑥 =  𝑠𝑛(𝐼𝑠(𝑛−1) + 𝐸𝑠(𝑛−1)) +  𝐿𝑠(𝑛−1) (33) 

The jobs below the target level are therefore given by the remainder of the backlog for period n: 

 𝐸𝑠𝑛
𝑚𝑎𝑥 = (1 −  𝑠𝑛)(𝐼𝑠(𝑛−1) + 𝐸𝑠(𝑛−1)) (34) 

Fig 2. Further illustrates what happens if the number of completions in the period are above the 

target level. The transition from day n to day n + 1 shows a value of dsn greater than the target 

level, so the extra completions are removed from the remaining rollover Esn . This results in a 

reduced backlog for the next period which continues to be split using the target proportion as 

before. 

5.2.4 Model Configuration 

With both the leader and follower model defined, the final part of creating the bi-level model is 

configuring the weights, , for all of the decision variables in order to obtain the required 

behaviour. 

The first fix for the model weights is to address the issue of the different productivities for different 

skills.  Some skills take little time to perform, so 1 hour applied to that skill might produce 5 

completions, whereas an hour applied to another skill might only produce 1 completion.  This 

introduces an unintended priority to the linear model as the optimal solution is going to be to 

apply time to the skills with the higher productivities in order to maximise the number of 

completions.  This is rectified to some extent by introducing a fixing factor to the weights for 

resource time application. This is done by dividing the weight by the productivity, giving m/ pmst.  

This ensures the cost for the completion of one job of skill s1 will equal the cost for one completion 

of s2 no matter what their productivities are. 

With the fix in place, the weights are configured to replicate the priorities of a manual planner.  

They will attempt to apply extra capacity through the use of overtime and contractors to allow 

the fault and productivity completions to reach their targets, prioritising faults slightly over 

installation.  For this purpose, the cost for the use of resource time, m was set to 1.0, with the 

benefit for completing a fault job, f, set to -1.0 and the penalty for rolling over a target fault job 

to the next period, lt, set to 0.1.  In this way, there was zero benefit for completing a fault job, if 

it was below the target but completing any jobs above the target level, would prevent the 0.1 
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penalty per job rolled over from being applied.  Similarly, the benefit for completing an installation 

job up to the target amount, p, was set to -1.05 and the benefit for any additional jobs, ap, was 

set to -1.0.  In this way the model prioritises target fault jobs, then target installation, then gains 

no further benefit from additional fault and installation. 

The weights for the leader model were also set to create the required behaviour.  The cost for 

overtime, o, was set to 0.05 and contractors, c, to 0.01.  The reasons for these values is that 

contractors are generally cheaper to use, but cover less skills, than overtime so should attempt to 

be applied first.  Also, although the cost for overtime matches the benefit for installation, the fact 

that the productivity value is generally > 1 means that 1 unit of overtime translates into more than 

1 unit of completions and thus it still would give a benefit when those completions are used for 

target installation completions.  Finally, the cost for reductions was set to 0.0 as the benefit for 

removing someone from the plan would be seen by the reduction in the cost of their time being 

used in the follower model if it wasn’t being applied efficiently.  

5.3 Results 

In this section we test the bi-level model on some real-world data.  First the data used is outlined, 

followed by the experimental technique and finally the results of the experiments are examined. 

5.3.1 Experiment Data 

For the purposes of this experiment one weeks’ worth of real planning data was obtained for a 

week in October 2017.  The data for 10 different areas was used to give us 10 different problem 

instances for the tests.  The total number of skills in the problem were 13 - 6 fault skills and 7 

installation skills.  Three of those installation skills were able to field contractors.  The number of 

resources varied per area, with the minimum number being 106 and the maximum 186 with an 

average number across all ten areas of 126.  To reduce the problem size to a more manageable 

size, resources with similar skill sets were grouped together into resource groups creating on 

average 3 groups per area.     

Fault workstacks for each skill in each area varied from 50 up to over 200 with additional jobs 

arriving per day (intake) ranging from 10 up to over 100 on average.  The target percentages for 

these, to indicate the target amount of the workstack to be completed each day, were set to the 

same as those used by the planners during that week.   These vary daily based on a rolling average 

of the percentage of jobs available daily used to define fault targets. The variance being quite large 

from 30% up to over 80% in some cases depending on area, skill and day of the week but with an 
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average of around 50%.  Similarly a rolling average by day of the week is also used to define 

installation selling targets based on the historical selling levels in those areas.  Four of the 

installation skills were lower volume and generally had completion levels per day in the 10s 

whereas the remaining 3, the ones that allowed contractors, were higher volume with values in 

the hundreds. The total average installation per day for the different areas ranged from 265 up to 

786 with an average of 391.  We also obtained the decisions made by the actual planners for those 

10 areas during that week to use as a comparison to the models results. 

5.3.2 Experimental Method 

The model was again implemented using java 1.7 with the watchmaker framework 0.71 used to 

implement the leader GA and the linear follower model implemented within the fitness function 

using SCPSolver and CPLEX 12.8.  This was then all run on a windows 8.1 Lenovo ThinkPad P50 

laptop running an Intel core i7 6820HQ processor with 40GB of RAM. 

The model was run on each of the 10 datasets with the evolution set to stop after 10 generations 

of stagnation.  Stagnation was used rather than generations again to allow earlier stopping or 

longer running depending on the complexity of the specific search space.  Stagnation was reduced 

to 10 generations however as the resulting solution evaluations of this model were more 

computationally intensive than those of the model in chapter 4.  The mutation probability for all 

3 sections of the chromosome were set to 0.05 with the crossover probability of 0.85 as some 

initial parameter turning found these to give a good balance between exploitation and 

exploration.  The overtime budget was set to 500 and the contractors to 1800 which were both 

slightly higher than the highest amount used by any of the planners in the problem instances to 

give the model a realistic max constraint that had a bit more space above what was actually 

utilised to ensure the solution is not constrained to just be at max the same as the actual solution 

generated by the manual planners.  The maximum amount of reductions allowed per day was set 

to 20 as a reasonable max number that might be loaned out of a given period of a plan.  After the 

models had reached their stopping point the resulting completions and capacity lever values were 

recorded to be compared with the planners’ decisions in those instances. 

5.3.3 Comparison to Planners 

Table 1 shows the results of the comparison experiments.  The values shown in the first column 

are the difference between the average distance between the target backlog level and the backlog 

achieved by the plan for each fault skill across each day of the plan by the model and the planner.  

The values for all areas are negative, which means the bi-level model was closer to the target in 
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all problem instances and by quite a significant margin.  Overall the model was 26.1 completions 

closer to the target on average than the actual planners. 

The second column shows the difference between the average amount of installation jobs 

completed for each installation skill across each day of the plan by the model and the planner.  

This time the negative value means that the bi-level model was producing less installation 

completions than the actual planners, however the value is fairly low at only a 1.3 difference on 

average when compared to the average installation jobs of 391 within the plan. 

 

 

 

 

 

 

 

 

 

 

Table 1 Results comparing model values vs real planners 

Area 

Average Per Skill Per Day Average Per Day 

Fault Off-

Target 

(jobs) 

Installation 

Sold (jobs) 

Overtime 

(FTE) 

Contractors

(jobs) 

Resources

(FTE) 

Area 1 -24.3 -1.3 2.7 40.5 -6.7 

Area 2 -60.8 -0.8 22.6 4.4 -2.3 

Area 3 -10.6 -3.3 8.4 -45.8 -2.3 

Area 4 -12.6 -2.0 9.2 -29.6 -2.6 

Area 5 -12.5 -1.5 -6.6 53.4 -2.3 
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Area 

Average Per Skill Per Day Average Per Day 

Fault Off-

Target 

(jobs) 

Installation 

Sold (jobs) 

Overtime 

(FTE) 

Contractors

(jobs) 

Resources

(FTE) 

Area 6 -50.4 -1.6 32.4 -66.2 -2.7 

Area 7 -20.6 1.0 17.7 -37.5 -2.9 

Area 8 -18.1 -0.5 -0.8 75.2 -2.9 

Area 9 -26.2 -1.9 8.0 -3.3 -2.9 

Area 10 -24.6 -1.5 18.0 -30.9 -2.3 

Overall -26.1 -1.3 11.1 -4.0 -3.0 

 

 

The last three columns show the difference between the average overtime, contractors and 

reductions applied per day by the model and the planner.  Here overtime and resources are in FTE 

and contractors are in number of jobs handled by them.  The data shows that on average the 

model used 11.1 more FTE of overtime daily but gave 4 less jobs to contractors and managed to 

remove an average of 3 resources from the plan per day.  The reason resources were removed 

while overtime was applied would indicate that some resources didn’t have useful skills on specific 

days and overtime was needed on the resources with the rarer skills instead.  These freed 

resources could be loaned to other areas or given different tasks.  The overall gain from the 

additional completions outweighs the additional cost of the overtime applied if we use the weights 

applied to configure the model, thus in that sense the model has produced a more optimal 

solution than the actual planners across all the problem instances.   This is particularly true when 

noting that being closer to the target workstack levels for faults will improve service and reduce 

any penalty payments.  It should also be noted that the high use of overtime by the model is also 

down to the fact that it is the only resource adjusting lever available.  An actual planner would 

spread those increases around across the other levers such as shrinkage or loans.  As such, with 

the goal being to reach the fault backlog levels and installation completion levels required, the 

model has shown the optimal way to reach these with the levers it had available in each case. 
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Looking specifically at the area with the largest difference in the fault off-target value between 

the planner and the model, area 2, to see how this was achieved, the large difference can be 

attributed to the area starting with the backlogs above the target equilibrium as illustrated in the 

graph of a typical skill’s backlog shown in fig. 9.  Looking at the target backlog line we can see that 

it is decreasing across the 7 days of the plan.  This is due to the target number of jobs to complete 

each day being a percentage of the start of day backlog, the target backlog levels therefore will 

naturally increase or decrease to the point where the percentage of the backlog on each day (the 

target number of jobs to complete) is equal to the intake of new jobs that day.  From the planner 

and model’s achieved backlog level lines we can see that the model performs much better in 

bringing the backlog down to target levels.  The planner does achieve some reduction but not at 
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the same rate as the target backlog level reduces and thus falls behind the required reduction 

rate.  Fig. 10 shows where this improvement is mainly achieved by the model, which is in the 

additional application of overtime early in the plan to bring the backlog down to the target level.  

We see increased overtime early in the plan with the levels back to normal by the last day of the 

week.  This is a typical pattern seen across all the areas tested, to a greater or lesser extent. 

5.3.4 Solution run times 

The final factor for consideration in these experiments is the solution time.  This was found to vary 

greatly between areas with the average solution times across the 10 areas when run on a windows 

8.1 laptop found to range from 1 hour 6 minutes up to 7 hours 54 minutes.  The average time 

across all runs across all areas being 3 hours 34 minutes.  Times of this magnitude bring the 

solution time into the range of usability in a fully automated planning solution however still far 

from fast enough to be used in a dynamic scenario with inputs rapidly changing.  Whether this is 

from planners modifying values to test scenarios or through updates to any forecast values. 

5.4 Conclusion 

In this chapter the capacity-demand matching sub-problem from the previous chapter was further 

expanded through the addition of a few capacity decision levers and extension to cover additional 

selling and demand rollover.  A bi-level model for solving this problem was defined, using a GA as 

the leader model that set the capacity constraints for the follower model, which was formulated 

as an improved linear programming version of the demand matching model.  The model weights 

were configured to mimic the planning priorities of the actual planners, aiming to use the capacity 

levers to bring the fault backlogs down to target levels, whilst also providing for target levels of 

installation jobs to be completed.  The model was also given the additional goal of attempting to 

remove excess resources from the plan (where possible) that could be loaned to other areas, used 

on other tasks or trained to cover new skills. 

It was shown using real world data that this model produces solutions which compare favourably 

with the current planning processes by bringing the fault backlogs far closer to target levels than 

the planners themselves had managed whilst keeping similar installation completion levels. This 

is achieved by applying additional overtime to the plan but at the same time managing to reduce 

the contractor use and free up some resources for use elsewhere.  These solutions were following 

the same priorities that a real planner would be taking and so the model could be used to 

effectively automate the tactical plan in the future. 
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However it was also discovered that the solution time for this bi-level model is only within the 

useable range for a static planning scenario where one plan is created each day.  In a dynamic 

scenario where the problem requires solving on demand the run time is still too long.  It should 

also be noted that the model here requires precise knowledge of available resources and required 

tasks.  In a real tactical planning situation this is not always available.  It is these factors that 

motivate the work conducted in the remainder of this thesis. 
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Chapter 6 

Solving the Capacity-Demand Allocation Problem 

with Incomplete Data 

6.1 Introduction 

When looking at real world scenarios, the planning problem is not always thoroughly defined.  

Some elements of data are incomplete or abstracted, for example it is not possible to know weeks 

in advance which resources may be unavailable through illness.  To still allow planning in this 

uncertain environment aggregated levels of resourcing are used (e.g. rather than having 10 

individual resources they would be counted as a quantity of 10 of an aggregated type).  Future 

illness, to continue the example, is thus modelled as a percentage reduction in this aggregated 

amount (the value based on predictions or historical trends).  This aggregation allows modelling 

of the problem in this uncertain situation (e.g. which exact resources will be ill etc.) but means 

that information is lost in the process, such as the precise skill makeup of each resource available 

as capacity.  In the previous chapters historical data was used to test the real world problem, 

meaning that a lot of things that may usually be unknown were known.  Such as the number of 

resources available on each day of the plan.  In reality a plan would be undertaken for future days 

where there is a lot of uncertainty.  This means that the optimisation models defined for demand 

matching in the previous chapters would not be applicable in this case as there is not enough 

information available for them to be used.  It is not just resource information that can be 

incomplete and thus require aggregation, demand information is also effected.  For example, for 

future predicted jobs it is not usually possible to know precisely where within an area these will 

arise and thus how long they will need to complete (Campbell, 2011). 

In this uncertain scenario, the process of demand allocation moves away from a precise 

optimisation problem to become more of a prediction problem.  It is not possible to dictate what 

jobs will be completed on each day, since which jobs will exist and thus where they will be located 

as well as which exact resources will be available is not known.  Instead, given the known 

aggregated data, the process of demand allocation becomes that of trying to work out the most 

likely distribution of job completions across the skills each day of the plan by each aggregated 

resource grouping.  Thus demand allocation, where decisions are being made on where to 
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distribute resources, is instead replaced by predictive planning, whereby the goal is to predict with 

high accuracy on which skills resources will be utilised once the schedule for that day is finally 

produced (when actual jobs and available resources are known). 

As such, in this chapter we explore this predictive planning problem and design and build a neural 

network model to solve it.  The goal being that this automated model could then be used as part 

of the capacity-demand allocation process when solving the planning problem in the real world 

situations with incomplete data.  A further motivation for this work is the potential to apply it in 

a practical scenario to greatly improve the accuracy and speed of performing the capacity-demand 

allocation process of the tactical plan.     

The chapter is organized as below. Section 6.2 describes the predictive planning problem and 

defines the models that are used in predictive planning with justification to use a neural network 

(NN) (Anderson, 1995) (Haga, et al., 1996).  Section 6.3 introduces three different predictive 

planning models investigated in this chapter. It also describes the data set and the experimental 

setups. Sections 6.4, 6.5 and 6.6 describe the three models respectively together with the 

experimental results. We conclude the chapter in section 6.7   

6.2 The Predictive Planning Problem 

This section of this chapter first outlines the predictive planning problem before possible 

predictive methods to solve this problem are described along with the justification for choosing 

the NN which we go on to develop in the remaining sections of this chapter. 

6.2.1 Problem Definition 

The predictive planning problem is that of predicting the expected number of completions of each 

task type (tasks grouped by the skill required to complete them) by each resource type on each 

day of the plan given the available time of each resource type (the capacity) on each day, the 

number of tasks requiring completion for each skill at the start of the plan (the workstacks) and 

the expected number of new tasks arriving (the intake) for each skill on each day. 

For the purpose of this chapter, the problem can be simplified to that of a single day.  The 

requirement to predict the completions that day, given the current workstack levels and the 

capacity.  The predicted completions on this day can then be used to calculate the expected 

workstacks for the next day by subtracting them from today’s workstacks and adding on the 

intake.  This would fulfil the requirements of the full definition, however some prediction errors 

would propagate to future days of the plan.  This is not a problem however as the plan is updated 
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each day, thus the current day would not contain any additional errors and the future days values 

are merely used to forecast any potential problems that may arise and set some base expectations 

for what is likely to occur. 

A separate model is required to predict completions for each skill by each resource group as 

knowledge of who is completing what is required in the final produced plan. 

6.2.2 Predictive Methods 

Methods that are considered for solving this problem are the use of a rolling average, which is 

simply taking the average of the past x number of day’s completions for that skill by that resource 

type on that day of the week, a linear regression (Kutner, 1996) or a NN.  These were selected as 

some representative methods used within forecasting with increasing levels of complexity. 

The rolling average is only briefly considered, although its accuracy is investigated, as it will not 

take into account the varying capacity levels on a given day.  For example, if resourcing levels are 

lower than previous weeks the rolling average will be predicting completion levels that are 

impossible to meet with that capacity.  Clearly this is not good enough for a predictive planning 

model.  However, the rolling average does make for a good baseline comparison value to use 

during the early stages of later model development. 

The second method considered is the use of a linear regression.  A linear regression is an approach 

for modelling the relationship between an output variable and one or more input variables.  This 

can be used to produce an equation to be used to calculate the output variables given our known 

inputs.  This will take into account the capacity levels if they are used as an input to the model and 

thus is an improvement over the rolling average.  Some initial testing however shows the linear 

regression approach is not providing much, if any, improvement over the rolling average.  This is 

likely due to some complex relationships between variables that the regression is unable to 

capture. 

Thus, the third method is considered, that of using a NN.  For the purposes of this chapter we are 

focusing on the multi-layer perceptron (MLP) (Gardner & Dorling, 1998) variant of NN as they are 

widely used in forecasting problems (Zhang, et al., 1998). 

MLP’s incorporate three layers, an input layer, an output layer, and between those, the hidden 

layer.  The hidden layer can contain a number of layers within itself.  Each layer can contain a 

number of nodes, each of these nodes is connected to each of the nodes in the next layer.  The 

number of layers within the hidden layer and the number of nodes in each of these layers is 



 

101 

 

referred to as the hidden layer topology for the remainder of this chapter.  The number of nodes 

in the input layer will always equal the number of inputs to the model, and the number of output 

nodes will always be one.  This is because we will be building a separate model to predict each of 

the required output values.  Fig. 11 shows an example of the layout of an MLP with three inputs 

and a hidden layer topology of two layers each with two nodes (or 2-2).  The connections between 

the nodes in each layer are each assigned a weight, these combine with node biases to allow the 

network to perform complex non-linear calculations giving an output value based on the values 

input to the network.  This non-linear feature is the last element required by our predictive 

methods to capture all the elements of our modelling problem.  Thus the NN, in particular the 

MLP, is a suitable candidate for use as the core model of the application and is the focus of the 

remainder of this chapter. 

 

Fig. 11 Multilayer Perceptron Node Layout Example 

 

6.3 Neural Network Model Development 

During the model development process a large number of experiments are performed to evaluate 

and validate decisions made.  All of the results presented are generated using the case study data 

outlined in 1.3.  The data obtained contains three workforce types, six fault skills and seven 

installation skills.  The specific data gathered for the model are the daily values for the capacity of 

the three workforce types and the total workstack levels of the thirteen skills, used as inputs, along 

the number of tasks completed by each resource type, used as the output of each model.  This 

data was gathered for four separate areas.  Two separate historical data sets are available for 

model building purposes, 38 weeks data for a specific day of the week – Friday and 6 weeks data 

for all days of the week.   
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Due to this data limitation we develop three separate NN models to cover three different 

scenarios.  

1. Single day model – to evaluate the full accuracy of a day specific completion prediction 

model with a large dataset of 38 weeks 

2. Full week model – to extend the single day model to predict completions for the whole 

week with a limited set of data 

3. Fault only model – Specific completion prediction model for some products where 

installation data is not relevant and only fault data is available 

Each data set is sourced from similar real world data set used to provide data in chapter 4. This 

includes 6 fault skills and 7 installation skills.  The data in this case had 38 weeks of a single day of 

the week (Friday) used for scenario 1 with 6 weeks covering all days of the week used for the 

remaining scenarios.  4 representative areas were sourced with a range from lower volume to 

higher volume.  The resource levels per area in the 100-200 range of available FTE with workstacks 

per skill ranging from around 50 for lower volume up to near 200 on higher volume skills.  

Completions per day ranged quite widely from single figures on average for some skills up to 

around 100 on some of the higher volume skills.  There was also a significantly lower volume at 

the weekends, particularly Sunday when most skills only performed single figure completions. 

For each experiment in this chapter, a separate model is created to predict the completions for 

each of the six fault tasks by each of the three workforce types in each of the four areas, resulting 

in a total of 72 models per experiment.  These models are implemented using Java 1.7 and the 

Encog NN library (Heaton, 2015) and run on a 64 bit Windows 8.1 based machine comprising 4GB 

RAM and an Intel Core i5-4300U CPU. Again a java solution was chosen as it is a requirement to 

develop a deployable solution in the industrial partner with the Encog library being a good java 

based NN library.  One week’s worth of data is set aside as the test data set and the models are 

trained on the remainder.  The trained models are then run on the test data and the predicted 

values compared with the actuals to calculate the accuracy and Pearson’s correlation for each task 

completion in each area.  The average of the accuracies and correlations over the four areas are 

what is presented and analysed in this chapter. 

6.4 Single day model 

For the single day model, initially a MLP is implemented with two hidden layers, both containing 

five nodes, using the backpropagation (Chauvin & Rumelhart, 1995) training algorithm as a 
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starting point.  All nodes were set to use the sigmoid activation function (Sibi, et al., 2013).  

Training is set to run for 500 iterations. We then tune this further through two distinct phases.   

1. Input analysis: Analysis and decisions relating to the inclusion of possible inputs.   

2. Training algorithms comparison 

6.4.1 Phase 1: Input Analysis 

The first step is analysing potential inputs and deciding on their inclusion.  Inputs under 

consideration are the resource capacities, R, skill workstacks, S, and the historical job completions 

values for each skill.  The resource capacities are the amount of time available for each group of 

resources on that day of the plan.  The workstack for a skill is the number of jobs that currently 

exist that are awaiting completion which require that skill to complete.  Finally the historical 

completions are the number of jobs of each skill that have been completed daily up to the current 

day.  This is also the value that the models are looking to predict for the future dates. 

The first decision to be made with regards to the model inputs is how, if at all, to use the past 

completion data as an additional input.  Two alternatives are tested, inputting these as a time 

series or as a rolling average.  In both cases the number of past data points included is varied from 

zero (no past completion data used) up to eleven.  The accuracy achieved for each of these values 

can be seen in Table 2.  The measure of accuracy used here, and in all subsequent results, is 

generated by calculating a weighted version of the mean absolute percentage error (MAPE) and 

inverting it to give the accuracy by subtracting it from 100.  The MAPE is a standard measure of 

error used in statistics and is calculated by first calculating the absolute percentage error of each 

data point by dividing the difference between the predicted and actual values and dividing that 

by the actual.  These are then summed and divided by the total number of data points to give the 

mean as seen in equation (35) where Ai is the actual value of data point i of n total data points and 

Pi is the predicted value. 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ |

𝐴𝑖 − 𝑃𝑖

𝐴𝑖
|  (35)

𝑛

𝑖=1

 

The problem with using this measure for the error is a bias towards data points with a lower actual, 

as often seen in real world data where weekend values or specific skills may have lower volumes.  

Data points where ns the actual is low, such as 5, then being 1 away gives an absolute error of 

20%.  However if the actual is 50 then a prediction that is 1 away only gives an absolute error of 

2%.  In both cases the prediction is only 1 away which when calculating something like resource 
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capacity required in a planning problem the values are equivalent.  To remedy this a weighted 

version of the MAPE is used whereby the sum of the absolute error is divided by the sum of the 

actuals which removes this bias as seen in equation (36). 

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑀𝐴𝑃𝐸 =  
∑ |𝐴𝑖 − 𝑃𝑖|𝑛

𝑖=1

∑ |𝐴𝑖|𝑛
𝑖=𝑖

 (36) 

It is discovered that the accuracy is similar between the two, with the rolling average slightly more 

accurate.  For this reason we decide to use the rolling average as the past completion input, with 

a duration of three selected.  This gives the best correlation value and also keeps the average 

length low which keeps the number of lost data points to a minimum whilst still giving a slight 

accuracy increase over not using the average at all. 

The second decision is which of the remaining inputs to use.  A correlation analysis between the 

inputs and outputs is performed with some typical results shown in Fig. 12 and 13.  The graphs 

show the correlation of the stated output with each of the inputs, the capacity for resource 1 to 

resource 3 and the workstacks of skill 1 to skill 13.  Here skills 1 to 6 are the fault skills and 7 to 13 

are the installation skills.  Fig. 12 shows an example of typical correlation results seen across a 

large number of outputs.  The output of completions of jobs requiring skill 2 by resource 1 is most 

highly correlated to the workstack for that skill.  This is as expected, the more work available the 

more jobs that may be completed.  However between the four areas we can see that the 

correlation with the remaining inputs varies significantly.  Fig. 3 shows a less typical situation 

where we see that completions of skill 4 by resource 2 are more highly correlated to some of the 

other skills workstacks than its own workstack.  This could be due to this resource only working 

on tasks of this skill type if there are not enough of other types available or perhaps this task is 

often performed at the same time as another.  Again we see a large variance between correlations 

with different inputs between the areas, thus the decision of which inputs to use cannot just be 

made on an output by output basis.  In order to accommodate this, and also any possible future 

correlation differences, a dynamic method of choosing which inputs to use is created.  During 

training, the correlation between each input and the output is calculated and inputs are filtered 

out if they do not pass a set threshold.   

This threshold is the focus of the experiments displayed in Table 3.  The first experiment run was 

using a length 3 rolling average and all of the capacity and demand inputs.  This showed an 

improvement was achieved by dynamically filtering out any inputs below a certain correlation 

value, with a cut-off point of 0.3 achieving the best results. 
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Fig. 12  Typical results where the output is most highly correlated with its own skills 

workstack 

 

 

Fig. 13  Case where the output is not most correlated with its own skills workstack 

 

Thus from the input analysis we can conclude that a rolling average of length 3 and a correlation 

cut-off point of 0.3 provides the best results.  However both of these processes do have their cons.  

The rolling average for completions is only valid for the first week, after that predicted 

completions values start dropping in which introduces inaccuracies.  It also requires additional 

historic data, which may not be readily available within the plan. For the correlation, it introduces 

additional storage requirements when saving each model, as which inputs were used in each case 

would have to be stored along with the model itself.  For these reasons, the gains achieved 

through including these factors will continue to be evaluated through the additional 

developments in phases two and three to ensure they still outweigh the cons. 
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Table 2  PAST COMPLETIONS AS INPUTS 

Data 

Points 

Average Time Series 

Accuracy Correlation Accuracy Correlation 

0 83.8% 0.54 83.8% 0.54 

1 83.5% 0.54 83.5% 0.54 

3 84.4% 0.56 84.2% 0.53 

5 84.7% 0.53 84.3% 0.53 

7 84.8% 0.51 84.4% 0.52 

9 85.1% 0.48 84.5% 0.49 

11 85.0% 0.50 84.5% 0.47 

 

 

Table 3  CORRELATION FILTERING 

Correlation 

Filter 

Backpropagation Resilient Backprop 

Accuracy Correlation Accuracy Correlation 

0 84.4% 0.56 88.3% 0.73 

0.1 84.3% 0.54 88.2% 0.72 

0.3 85.4% 0.61 88.9% 0.77 

0.35 85.2% 0.61 88.6% 0.74 

0.4 85.0% 0.60 88.7% 0.71 

0.45 85.2% 0.60 87.6% 0.70 

0.5 84.9% 0.60 86.6% 0.68 
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6.4.2 Phase 2: Training Algorithm comparison 

The next step undertaken is to explore some alternate training algorithms available within the 

Encog library.  Resilient backpropagation (Kişi & Uncuoğlu, 2005) is selected as a good candidate 

and tested, the results shown in the second column in Table 3 where the same measure of 

accuracy, the inverse of the weighted MAPE described in 6.4.1, is still used.  It can be seen to 

produce far superior results to the original backpropagation which is likely due to the variations it 

introduces to the learning rate.  In particular it shows a large improvement in the correlation.  Thus 

it is used throughout the future development.  It is also noticed that with the improved training 

algorithm the improvements from using correlation filtering have been reduced.  Thus we decide 

to remove the correlation filtering step to simplify the training and storage processes as it isn’t 

providing a great enough improvement to justify the complication. 

6.5 Full Week Model 

The next step is to expand the single day model through the creation of a model to cover an entire 

week.  With only six weeks of data available there are not enough data points to create an 

individual model for each day of the week.  As such we investigate three methods of constructing 

a model to cover the entire week.   

1. Create one NN model to predict any day of the week. 

2. Create a composite model combining one NN model to predict weekdays and another to 

predict weekends as weekends tended to behave differently to weekdays.   

3. After observing that Saturdays often only have a slight reduction in completion values over 

a weekday a third alternative is investigated, to create the composite model using one NN 

model to predict Monday to Saturday combined with a separate Sunday model. 

With the correlation filtering already ruled out during the single day model building process, we 

continue to evaluate the rolling average to ensure the gains are still enough to overcome the cons.  

For the full week data this average is constructed for each day of the week individually, so the 

rolling average input on a Monday is the average of the last x Monday’s completions.  The results 

of testing the different model configurations, along with the varying number of data points used 

for the average, can be seen in Table 4.  Again the accuracy displayed is the inverse of the weighted 

MAPE described in 6.4.1.  
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These show that the best combination is the third option, to create a NN model for Monday to 

Saturday with a separate model for Sundays.  The inclusion of the average also produces little 

improvement in accuracy or correlation, with the model producing a very high correlation to the 

weekday trends (e.g. lower at the weekends) even without the average to give day specific inputs.  

In some cases the average even reduces the model accuracy.  Thus the best decision is to not use 

the rolling average as an additional input. 

6.6 Fault Only Model 

Unlike fault workstacks, which can be forecast many months in advance, in many products and 

services the installation workstack is only fully known on the execution day as they are not forecast 

for future dates.  This means that these workstacks are not available to use as inputs for these 

products. The rest of this chapter is focused on solving the problem with only the fault workstacks 

available as it is one of the core requirements from the planning community. The goal is to produce 

a prediction at least as accurate as the current manual planning process where planners decide 

the completions numbers only based on the forecast fault workstacks.  

The first approach is to simply run the model after removing the installation data set. Initial tests 

show that removing this data causes a significant dip in the accuracy of the full week model of 

greater than 10%. 

A two phase approach is then investigated to improve the prediction model to achieve better 

results than the current planning processes.  

Table 4  Full Week Model Setups 

Data 

Points 

All Week 
Weekday + 

Weekend 

Mon-Sat + 

Sun 

Acc. Corr. Acc. Corr. Acc. Corr. 

0 86.1% 0.93 87.2% 0.93 88.3% 0.94 

3 85.7% 0.92 87.6% 0.94 88.0% 0.94 

5 85.6% 0.92 87.8% 0.94 88.5% 0.95 

7 85.8% 0.93 87.7% 0.94 88.2% 0.94 

9 86.5% 0.93 87.8% 0.94 88.1% 0.94 
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1. Initial Network Improvements: The first phase is an attempt to improve the neural network 

to produce a greater accuracy.  For this we introduce cross validation into the training 

process, and also investigate different hidden layer topologies.   

2. Overfitting avoidance: The second phase is to investigate solutions to the problem of 

overfitting to the training dataset. This is motivated by an initial test run of an experiment 

to change the number of training iterations notes an accuracy decrease when the number 

is initially increased.  This highlights that the accuracy is perhaps being impacted by 

overfitting to the currently small training data set. 

We describe the two phases in detail below in sections 6.6.1 and 6.6.2, followed by the final 

analysis of the results in section 6.6.3. 

6.6.1 Phase 1: Initial Network Improvements  

As mentioned above, these first experiments are an attempt to increase the accuracy by improving 

the network.  The first of these involves introducing cross validation to the training process.  The 

number of folds are varied, with values ranging from two to six tested, to discover which makes 

best use of the available training dataset. The best of these are used in the subsequent stages.  

The second round of experiments involves modifying the topology of the hidden layer.  Early on it 

is discovered that using just one single hidden layer appears to be optimal, with values from three 

to nine hidden nodes tested, however a few multi-layer results are also included. 

6.6.1.1 Cross Validation Results 

Fig. 14 shows the results of varying the number of folds when using cross validation.  The 

difference is not very large, however the best result for accuracy and correlation can be seen 

around three folds where 76.1% is reached.  At this stage the model accuracy is still below the 

planners’ accuracy of 82.6%, however if we look at the accuracy breakdown per task type seen in 

Fig. 15 for the best result of three folds we can see that in the case of task types 2 and 3 the model 

is producing slightly better results.  The model is still underperforming substantially when 

predicting the remaining task types, particularly task type 4.  The results look promising overall 

however with such a significant improvement achieved already. 
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Fig. 14  Cross Validation Experiment Overall Results 

 

 

Fig. 15   3-Fold Cross Validation Accuracy Results by Task Type 

 

6.6.1.2 Hidden Layer Topology Results 

In Fig. 16 We can see the results of the hidden layer topology tests.  A single number for the node 

topology indicates that number of nodes in a single layer, two numbers indicates that number of 

nodes in each of two layers.  The results show that further improvements have been reached over 

the 5-5 topology used previously.  The best results occur for using only a single hidden layer with 
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the optimum occurring with 8 nodes in that layer producing an accuracy of 79%.  This is still lower 

than the planners’ accuracy but has halved the gap previously seen.  The correlation has also 

bridged the gap by a similar magnitude.  Looking at the task type breakdown for this improved 

model (Fig. 17) we see that task type 2’s accuracy is further improved compared to the planner, 

with task types 1, 3, and 6 now reasonably close.   

6.6.2 Phase 2: Overfitting avoidance  

The next batch of experiments for phase 2 involve attempting to overcome the overfitting to the 

small dataset.  The first solution trialled is using an ensemble of models, rather than a single 

model.  Multiple models are trained for each output and the predicted value given by taking the 

average of the predicted value of all the models in that cluster.  The final method explored to 

overcome the overfitting issue is the use of a new stopping condition during the training process.  

Instead of just running the training for x number of generations, something which we could 

attempt to tune in the same manner as the hidden layer topology, it is instead decided to use a 

more dynamic stopping condition, that of the early stopping strategy (Prechelt, 1994).  During 

training, instead of using all of the training data set to train the model a further portion is set aside 

for validation at each training generation.  After each training generation the accuracy is tested 

on the separate validation data, the theory being that as the model is trained the accuracy will 

initially increase for this validation data.  However, once overfitting starts to occur the accuracy 

will then begin to decrease again on the validation data.  Thus the early stopping strategy runs the 

training process until the accuracy on the validation data begins to decrease, e.g. once overfitting 

has been detected. 
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Fig. 16  Hidden Layer Topology Overall Experiment Results  

 

 

Fig. 17   8 Nodes in Hidden Layer Accuracy by Task Type 

 

6.6.2.1 Model Cluster Results 

This next experiment involves training an ensemble of models to attempt to reduce the impact of 

overfitting by taking their average as the actual prediction.  The results in Fig. 18 show that there 

is a further, slight, improvement achieved of around 1% with the best coming from using a batch 

of 7 models giving an accuracy of 80.1%.  Looking at the individual task type breakdown for this 
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setup in Fig. 19 we can see that it provides better results than the planner in half of them now, 

however there is still a large deficit in task types 4 and 5. 

6.6.2.2 Early Stopping Strategy Results 

The final experiment performed is a repetition of the previous experiment, varying the number of 

models in the prediction cluster, but with the addition of the use of the early stopping strategy 

during model training to avoid overfitting to the small data set.  This produces significant 

improvements, as seen in Fig. 20, with the best overall accuracy now achieved with a 5 model 

cluster.  This gives an accuracy of 84.1%, which is higher than the 82.6% achieved by the planners 

in the same period.  In fact, even without using clustering (with a cluster size of 1) the model was 

achieving 83.1% which is still slightly better than the current planning process.  The correlation 

achieved is also up to 0.94, which is comparable to the 0.95 achieved by the planners.  Looking at 

the individual task type breakdown again in Fig. 21 we can see that the model is now 

outperforming the planner in five of them, however there is still a significant deficit in task type 5.  

This may highlight this task type as one that is a problem for the model to predict accurately or 

the manual planners may understand something about it that has not been captured by the inputs 

being used. 

 

Fig. 18   Model Cluster Overall Experiment Results 
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Fig. 19   7 Models in Cluster Accuracy by Task Type 

 

 

Fig. 20   Early Stopping Training Condition Overall Experiment Results 

 

65%

70%

75%

80%

85%

90%

95%

100%

1 2 3 4 5 6

A
cc

u
ra

cy
 %

Task Type

Accuracy By Task Type

7 Model Cluster Planned

70%

75%

80%

85%

90%

95%

100%

1 2 3 4 5 6 7 8 9 10 Planned

A
cc

u
ra

cy
/C

o
rr

e
la

ti
o

n
 %

No Models In Cluster

Early Stopping Condition Overall Results

Accuracy Correlation



 

115 

 

 

Fig. 21   Optimal Model Settings Accuracy by Task Type 

 

6.6.3 Prediction Quality 

In Fig. 22, 23 and 24 we look more in depth at how the optimally setup model is predicting the 

weekly trend.  These graphs show the total actual completions per day across the four areas, 

against the total predicted by the model and the total predicted by the planners.  In Fig 22. We 

pick out a typical example of a task type where the model is producing slightly more accurate 

results than the planner, as in task types 1 and 3.  From this graph we can see that although the 

prediction is slightly off the planned, the planners were further off for most of the week.  The 

predicted line does tend to follow the trend of the actual across the whole week also. 

In Fig. 23 we can see an example where the predicted accuracy is significantly superior to the 

planner, as seen in task types 2 and 6.  The predicted line follows the actual almost exactly for the 

first half of the week, although there is some discrepancy on Thursday.  In general however the 

trend does follow that of the actual values, hitting near the exact for most of the week. 

In Fig. 24 we show the breakdown for the problem task types, that of 4 and 5.  Here we see that 

the prediction is significantly off on Saturday and doesn’t tend to follow the trend for the 

remainder of the week, merely taking the average point.  Interestingly, although we achieve 

greater accuracy than the planners in task type 4 we can also see this Saturday discrepancy.  In 

this case however the average value through the week is better than what the planners were 

plotting and thus we achieved a greater accuracy.  The difference in these cases would suggest 

that the problem arises from the fact that unlike the other 4 task types the values achieved on a 

Saturday are significantly different to the rest of the week.  Thus these two may be better served 
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with a Weekday and Weekend model split.  However this problem should not be an issue when 

working with larger training sets with enough data to train individual day of the week models.  This 

can be seen in the initial high accuracy for the models on the Friday only dataset. 

 

 

Fig. 22  Typical task type where the model is slightly more accurate than human planners 

 

 

Fig. 23  Typical task type where the model is significantly more accurate than human planners 
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Fig. 24  Problem task type example 

 

6.7 Conclusions 

In this chapter we investigated methods to accurately predict completions in the real world 

situations where there is incomplete planning data.  We defined the predictive planning problem 

and identified some possible methods that could be used to solve it.  From these methods we 

chose the NN to achieve our goals.  We describe several scenarios we used to develop and refine 

the model through rigorous experimentation, aiming to achieve the goal of creating a system that 

is at least as accurate as the current manual planning process but would complete the task in far 

less time and could be used as part of an automated planning algorithm when there is incomplete 

data.   

The initial general model developed in this chapter produced very acceptable results.  We 

managed to produce a very high accuracy whilst also ruling out the need to utilize any techniques, 

such as correlation filtering, which would add an extra calculation burden to the training process 

and also complicate the storage and use of these trained models within the final application.  We 

also ruled out the need to use past completion data, which would begin to utilize predicted data 

points as the model is run on subsequent days.   

Moving onto the specific scenario where there are less inputs available to the model, we have 

managed to further improve the initial model to the point where it is producing a better overall 

accuracy than the current planning process despite having a limited dataset.    Improving upon the 

current accuracy has met the goal of this chapter as it will allow the use of this model to perform 

demand allocation in the real world scenarios where not all data is available. 
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Chapter 7 

 Solution Evaluation with Incomplete Data 

7.1 Introduction 

In order to introduce automation to the tactical planning process there needs to be a way to 

accurately evaluate different plan solutions.  The cost of resources used forms part of this 

evaluation, and is relatively simple to calculate, the remainder coming from the cost associated 

with which tasks are being completed and when.  In previous chapters we have just been assigning 

a cost to missing a task based on the priority for that type, however a key component of this cost, 

in real world scenarios, is derived from the service level agreement (SLA) (Verma, 2004) of these 

tasks.  In general the service level agreement states that a certain percentage of those tasks must 

be completed successfully within a specified time period.  Different tasks can fall under different 

service level agreements.  Failing to meet these agreed levels results in financial penalties for the 

company. 

A formula for this is formulated in section 3.4.3.2 however using this to evaluate a plan solution is 

complicated by the fact that planning usually occurs at the aggregate level, as described in the 

chapter 6.  The problem this introduces to the evaluation of a solution is that, after grouping tasks 

into the workstacks based on the skill required to complete them, the individual tasks within each 

workstack may have different service level agreements. Thus available inputs to the problem do 

not contain data at a high enough level of detail to allow grouping by service level agreement. 

One solution is to further subdivide each workstack by the service level agreement of the tasks 

contained within.  However this level of detail is not always easy to achieve, particularly in the 

case study in this thesis, where it will result in some aggregate groupings having very low volumes 

and thus be difficult to predict accurately.  The intake predictions for the plan are also not 

something being explored in this thesis, instead focusing on solving the planning problem itself. 

An alternate solution therefore, and the focus of this chapter, is to attempt to predict the service 

levels achieved for each service level agreement using the currently available plan inputs.  This 

prediction, if accurate enough, could be used to evaluate plan solutions.  A further advantage of 

this approach is that it could also be used as a standalone solution to assist the current planning 
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process, allowing senior planners to identify where action is required to avoid failing to meet 

service level agreements. 

For this purpose we present a neural network (NN) (Anderson, 1995) (Kourentzes & Crone, 2010) 

model to predict the upcoming service levels based on the current status of the plan.  A NN model 

was chosen for this purpose as it had already been shown to perform well when predicting the 

completions using real world planning data in the previous chapter.  We investigate the accuracy 

this model achieves using some anonymized real world data, since service level results are 

commercially sensitive information, from our case study.  The model predicts the service levels 

daily.  It does so in such a way that aggregate predictions can also be produced allowing a weekly 

prediction that can be presented to management to be useful in the current processes of the case 

study business.  As such the actual volume of tasks successfully completed are predicted and then 

used to calculate the service level percent, rather than predicting the percentage directly. 

In this chapter we first define this service level prediction problem in section 7.2, describing the 

general problem and introduce the specific real world example.  We then outline our NN model 

used to solve the problem in section 7.3.  Section 7.4 contains the results achieved by this solution, 

looking at both the daily accuracy and the aggregated weekly prediction accuracy, before we 

conclude in section 7.5. 

7.2 The Service Level Prediction Problem 

In this section we define the service level prediction problem.  First we define the general service 

level prediction problem before describing the dataset used in this chapter.  We then perform 

some analysis on the available inputs in the data to further refine the problem definition for the 

real world example we are solving. 

 

7.2.1 General Problem Definition 

The service level prediction problem is that of accurately predicting the percentage of tasks, Ri, by 

service level agreement, i, which will be successfully completed on time given the current state of 

the plan. The time allowed varies depending on which service level agreement the task in question 

is covered by.   

The current state of the plan is defined by the current planned completions, Cj by skill, j, the start 

of day workstack levels, Sj, by skill, j, the intakes Ij(the number of new tasks entering the plan 
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daily) by skill, j, and the available capacity, Vk, by resource types, k.  Additional features of the 

plan, for example overtime decisions, generally serve to modify the values already listed.  Thus 

those inputs are an adequate representation of the plan state that is relevant to the service level 

outcomes and can be used to define the problem.  

 𝑅𝑖 = 𝑓𝑖(𝐶, 𝑆, 𝐼, 𝑉) (37) 

Here C, S , I and V define the input set of all completions, workstacks, intakes and capacities 

respectively, fi is the function of these inputs to produce the service level of service level 

agreement i. 

In addition, given the nature of a service level agreement, that it is a commitment to complete 

tasks of that type successfully within a certain time frame, historic values of the inputs also need 

to be considered.  For example, if the service level agreement for a particular task is to complete 

a certain number successfully within two days then the intake from two days ago would contain 

some tasks that required completion by today.  Further to that, the historic number of jobs being 

completed and resources available, which might affect what types of task are being completed, 

would influence which specific types are still left requiring completion by today.  We further define 

Cjt as the planned completions by skill j t days before the prediction date, similarly for Sjt and Ijt as 

the workstack and intake for skill j t days prior respectively and Vkt as the capacity for resource 

type k t days prior.  For example the input Cj2 would be the planned completion for skill j two days 

before the prediction date.  Defining T as the maximum number of days and the sets CT, ST, IT and 

VT as the sets of all completions, workstacks, intakes and capacities respectively, where 0 <= t <= 

T gives the updated problem definition. 

 𝑅𝑖 = 𝑓𝑖(𝐶𝑇 , 𝑆𝑇 , 𝐼𝑇 , 𝑉𝑇) (38) 

7.2.2 Problem Example 

The data used in this chapter consisted of 203 data points, each data point representing a day.  

For each data point (or day) there was the plan state (C, S, I, V) and resulting service levels, Ri, for 

56 separate areas.  The plan state included the capacity levels for 3 resource types and the 

completions, intakes and workstacks for the 6 fault skills giving 21 input values for each plan day.  

Resource capacity levels varied by day of the week and type from only low single figures on the 

lowest volume resource type, through from 0 on Sundays to 10-20 for the mid volume resource 

type with the final largest ranging from 10-20 on Sundays up to around 200 during the week.  The 

completions, intake and workstack levels similar to those from the data set used in chapter 5.  

Namely workstacks of around 50 to 200 on average per skill along with intakes from 10 to 100 and 
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completions of a similar level.  The number of failed tasks by type was very low volume in the 

single figures daily with success being close to the completion levels.  Following the work in 

chapter 6 the installation skills are not included as the real world data does not track intakes and 

workstacks across the whole plan.  The service levels were for tasks on two different service level 

agreements. 

To allow the outputs to be aggregated the number of tasks successfully completed, Yi, and the 

number failed, Fi, require predicting separately for each service level, i.  This way they can be 

summed to calculate the percentage of tasks successfully completed at any reporting level 

required.  For example we can produce a weekly service level report or an aggregated value for 

multiple areas.  The resulting service level for any aggregated level being calculated using the total 

success and failure predictions of the individual predictions as follows. 

 𝑅𝑖 =  
𝑌𝑖

(𝑌𝑖 +  𝐹𝑖)⁄  (39) 

Here Yi and Fi are still a function of the current plan state for the prediction date and the plan state 

for the past T days giving similar equations to (38). 

 𝑌𝑖 = 𝑔𝑖(𝐶𝑇 , 𝑆𝑇 , 𝐼𝑇 , 𝑉𝑇) (40) 

 𝐹𝑖 = ℎ𝑖(𝐶𝑇 , 𝑆𝑇 , 𝐼𝑇 , 𝑉𝑇) (41) 

Another option would have been to predict the number of successfully completed tasks and the 

total number of tasks required of that type on that day.  The problem with that approach is that 

with the prediction models being separate it may have been possible that on a given day the 

predictions state that more jobs were successful than the total number of tasks required of that 

type on that day. 

7.2.3 Input Analysis 

As mentioned in 7.2.1, historical plan states are likely to affect the service level outcomes for today 

due to the time factor in the service level agreement.  As such, part of the problem definition 

process is deciding how many previous plan states, T, are required as additional inputs.  To inform 

that decision a correlation analysis is performed between the outputs (Yi and Fi) and the plan state 

for that day along with the plan state for each day going back a further 6 days across all areas in 

the data set (C6, S6, I6, V6).  For the analysis the data is clustered into sets by the day of the week 

to also investigate if the current weekday has any effect on which past plan states are more 

correlated to the current service level outcomes. 
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 Some examples of the results achieved are presented in tables 5 and 6.  On each table the rows 

are the days of the week the cluster is for and the columns indicate t, the days prior to the current 

day the entry is for.  For example the 1 column for the Mon row indicates the average correlation 

across all 56 areas between the output for that table on the Monday and the input for that table 

from one day before, in this case the Sunday.   

The analysis covers all 4 outputs, success and failure for each of the two service levels, versus each 

of the 21 inputs.  Analysis of all the results, focusing on which number of days prior to the current 

day produce the highest correlation, show that two main patterns emerged.   

Table 5 shows an example of the first pattern.  With the highest and second highest correlated 

values highlighted a distinct diagonal line can be seen across the days of the week, excluding the 

weekend.  Most weekdays are correlated highest to the Monday or Tuesday value for that week 

in this pattern.  This can mostly be seen in the capacity input, although appears in a few of the 

clears inputs also.  This suggests that the amount of the backlog that has built up over the weekend 

which gets cleared early in the week has an effect on the resulting service levels for the entire 

working week. 

Table 5    V3 average correlation with Y1 

0 1 2 3 4 5 6

Mon 0.64 0.43 0.46 0.42 0.36 0.37 0.45

Tue 0.51 0.43 0.34 0.36 0.36 0.33 0.35

Wed 0.39 0.41 0.46 0.34 0.34 0.36 0.33

Thu 0.32 0.35 0.37 0.33 0.31 0.32 0.33

Fri 0.32 0.35 0.37 0.37 0.34 0.32 0.33

Sat 0.38 0.31 0.32 0.33 0.33 0.31 0.32

Sun 0.70 0.50 0.43 0.41 0.36 0.39 0.37

Weekday
Lag Days, t

 

An example of the second pattern predominant in the data is shown in Table 6.  In this pattern we 

see that the highest correlated values tend to occur for a fixed t value.  This pattern is seen most 

often in the workstack and intake inputs but also, as in the example shown, occurs in a few of the 

clears.  This fixed t seen in this pattern is likely caused by the time allowance portion of the service 

agreements. 
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Table 6   C2 average correlation with Y2 

0 1 2 3 4 5 6

Mon 0.38 0.37 0.41 0.36 0.34 0.33 0.35

Tue 0.39 0.42 0.62 0.40 0.35 0.33 0.36

Wed 0.35 0.47 0.62 0.37 0.37 0.36 0.35

Thu 0.39 0.37 0.51 0.42 0.36 0.37 0.34

Fri 0.34 0.34 0.37 0.33 0.35 0.32 0.30

Sat 0.32 0.34 0.37 0.35 0.34 0.35 0.35

Sun 0.40 0.33 0.33 0.31 0.31 0.34 0.32

Weekday
Lag Days, t

 

The main conclusion drawn from the correlation analysis, with regards to this problem 

formulation, is that allowing a value of t = 4 previous data points is required to capture the best 

correlated values for each input.  This is enough to ensure that when looking at the output on a 

Friday then the Monday inputs are still being considered.  Going further to a value of 5 or 6 for t 

is not required as the correlation analysis shows that they rarely contain any of the top correlated 

values. 

The data analysed shows the average correlations across the 56 areas, with a lot of variation seen 

within each. Thus it will not give the best accuracy to simply use this average correlation analysis 

to pick the precise inputs for the final model.  As such we keep all possible lag values, up to the 

selected cap of 4, for each input, reducing the number of data points to 199 but increasing the 

number of inputs to 105, and instead filter these dynamically during the model creation for each 

output in each area. 

7.3 Neural Network Solution Method 

This section describes the neural network model that we use to solve the service level prediction 

problem.  We use some dynamic model construction to create a different model to solve 

equations (40) and (41) in each area.  First we define the NN model used to solve the problem in 

7.3.1.  This we follow with a brief description of a filtering technique that is used to dynamically 

reduce the number of inputs used by each model in 7.3.2.  Finally in 7.3.3 we cover the training 

techniques that are used to train the model. 

7.3.1 Model Construction 

A feedforward multi-layered perceptron (Gardner & Dorling, 1998) neural network is chosen as 

they are widely used for forecasting (Zhang, et al., 1998).  A single hidden layer, containing 12 

nodes, is used to predict each of the outputs, Yi and Fi, individually. As such each has a single 

output node. 12 nodes was selected as an increase in the number of inputs was found to require 
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additional nodes from the model created in chapter 6.  Some initial tuning experiments found 12 

nodes to provide a good accuracy in this problem.  .  The number of input nodes varies for each 

output as we dynamically select the inputs to use from the plan state sets of C4, S4, I4 and V4.  Each 

layer uses the sigmoid activation function (Sibi, et al., 2013).  The network is implemented using 

the Encog (Heaton, 2015) library in Java 1.7.  As with previous chapters this was implement on a 

windows 8.1 Lenovo ThinkPad P50 laptop running an Intel core i7 6820HQ processor with 40GB 

of RAM 

7.3.2 Input Filtering 

With such a large number of inputs there is a risk of noise impacting the accuracy of the trained 

models.  As such we employ the dynamic filtering technique developed in chapter 6 to use each 

input’s non-linear correlation with the output that the current model is being built for to select 

which inputs to use.  Some initial quick tests show that choosing a value of 0.5 proves to be a good 

cut-off point.  Thus, during the construction of the model to predict each output in each area only 

inputs with a correlation value of 0.5 or greater are used. 

7.3.3 Training Techniques 

The models are trained using the resilient backpropagation algorithm (Kişi & Uncuoğlu, 2005) with 

25 random restarts, chosen as it was shown to be effective in the previous chapter.  The training 

data is split into two sets, the training set and the validation set.  The models being trained using 

the training set and having their final accuracies evaluated on the validation set.   

Two techniques are investigated to avoid overfitting, the first being the early stopping strategy 

(Prechelt, 1994) that proved effective in 6.6.2 and the second using dropout (Srivastava, et al., 

2014) to investigate a potential alternative.  In the early stopping strategy, after each training 

iteration, the current accuracy of the model is tested using the validation set.  Once the accuracy 

on the validation set stops improving and starts to decrease then overfitting has started to occur 

on the training set so the training process is halted.   

Dropout is another technique currently in use to avoid overfitting, in this case at each training 

generation a node has a defined probability of being excluded, or dropped out, at each training 

generation.  The weights applied to each node are then multiplied by this probability when the 

final trained model is used.  This has the result, in essence, of training multiple thinned networks 

that are used as an ensemble when performing predictions without the large computing 

performance required to train and use a large number of networks.  Training in the dropout case 
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is set to end when stagnation is detected, in this case when the trained accuracy has not improved 

by 0.2% over 50 iterations as this is a reasonable indicator of stagnation.  

In both cases the training process is run 25 different times using different random seeds to set the 

initial weights with the models that produce the best accuracy on the validation set chosen for 

each output to give a reasonable range of results.   

7.4 Results 

In this section we first outline the method we use in these experiments in 7.4.1.  Analysing these 

results we cover, first when looking at daily prediction values in 7.4.2 then by looking at the 

aggregated weekly results in 7.4.3.  

7.4.1 Experimental Method 

The dataset outlined in section 7.2 is used to test our model accuracies.  For each area we split 

the data into 178 training points and 21 for testing. This simulates predicting for 3 weeks in a plan 

performed on the first date in the testing set.  This data is further clustered by day of the week 

giving 25 to 26 training points and 3 testing points per cluster.  For the training process the training 

portion is split further, removing 5 points for validation leaving 20-21 points for training. 

We then use this data to create and train a model for each of the 4 outputs (Y1, Y2, F1 and F2) for 

each of the 56 areas for each day of the week.  Each model is trained using the training data points 

and then tested on the test data.  The accuracies of the predictions against the testing data are 

presented for each experiment. 

The experiment is run for all areas using the early stopping strategy and dropout for comparison.  

Results displayed show the average accuracies across all 56 areas   

7.4.2 Daily Prediction Results 

  First we analyse the results of the daily predictions, the results displayed are grouped by the day 

of the week.  For example the Monday entry shows the average accuracies for predictions made 

using the Monday model created for each of the 56 areas.  The accuracy is shown for the success 

prediction model, Yi, and failure prediction model, Fi, for both of the service levels i, along with a 

column showing the resulting accuracy when the models are combined to give the service level 

prediction Ri. 

Table 7 shows the accuracies achieved using the early stopping strategy.  The accuracy calculation 

used is identical to that described in 6.4.1 for the experiments in chapter 6, being that of the 
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inverse of the weighted MAPE.  The accuracy for the failure model is fairly low, being about 52.4% 

on average for the two service levels.  The number of failures per day tends to be fairly low 

however, thus the low volume drives this seemingly low accuracy.  Being one away from the 

correct value when the total is five is a much higher percentage error than being one off when the 

total is fifty.  This also explains the general lower accuracy seen for Sunday predictions as these 

tend to be days with low total number of jobs completed.  Even taking this into account however 

the overall accuracy of the individual success and failure models is too low to be used in practice.   

Table 7  Average accuracy of predictions using the early stopping strategy over all areas by 

day of the week 

Y1 F1 R1 Y2 F2 R2

Sat 80.3% 56.4% 89.7% 87.1% 59.4% 92.9%

Sun 61.0% 4.2% 86.1% 52.3% -4.0% 63.8%

Mon 86.2% 55.0% 93.9% 87.8% 67.3% 93.8%

Tue 84.6% 58.7% 95.3% 74.6% 48.4% 83.2%

Wed 87.8% 62.8% 95.9% 86.7% 64.5% 93.2%

Thu 87.6% 61.8% 93.0% 85.9% 63.3% 93.3%

Fri 89.0% 66.1% 95.0% 88.8% 70.0% 93.0%

Average 82.4% 52.2% 92.7% 80.5% 52.7% 87.6%

Day Of Week
Service Level 1 Service Level 2

 

 

This conclusion changes when we combine the success and failure model outputs to generate 

predictions of the resulting service level (percentage of successful tasks) instead.  The service level 

column, Ri, shows the average accuracy across the areas, by day of the week, for this combined 

prediction.  The average accuracy across all days and both service levels in this case is about 90.2% 

even when including the lower accuracy produced by the reduced volumes on a Sunday.  

Considering the goal of the problem is to predict the service level this is a much better evaluator 

and as such we can see this model is useable in practice. 

The same experiment is run using dropout instead of the early stopping strategy, the results for 

this shown in table 8.  We see the same general trends as using the early stopping strategy, lower 

accuracies for the low volume failure and Sunday models.  Much improved accuracy when they 

are combined to produce the final service level predictions.  Further to that, we can see that 

compared to using the early stopping strategy as an overfitting avoidance measure, using dropout 

produces some accuracy improvements across the board.  Most relevant being the increase in the 

average accuracy of the service level prediction from 90.2% to 90.5%.   
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Table 8  Average accuracy of predictions using dropout over all areas by day of the week 

Y1 F1 R1 Y2 F2 R2

Sat 81.7% 60.7% 90.8% 87.5% 61.7% 93.1%

Sun 62.8% 12.0% 85.1% 54.1% -3.3% 66.3%

Mon 86.9% 58.9% 94.4% 88.8% 68.2% 94.1%

Tue 83.9% 59.2% 95.4% 75.7% 47.4% 83.1%

Wed 87.3% 64.1% 96.1% 87.1% 65.6% 93.5%

Thu 87.3% 63.1% 93.1% 86.9% 64.0% 93.8%

Fri 88.3% 67.3% 95.2% 89.0% 70.5% 93.1%

Average 82.6% 55.0% 92.9% 81.3% 53.4% 88.1%

Day Of Week
Service Level 1 Service Level 2

    

7.4.3 Weekly Prediction Results 

In order to also evaluate the usefulness of this model to the current planning procedures, whereby 

senior planners take a weekly view of each areas workstacks to decide where might need 

additional resourcing, we also analyse the accuracy of the predictions when aggregated to the 

weekly level.  We sum the success and failure models for each of the three weeks and apply 

equation (39) to calculate the resulting service level for that week.  We count the number of times 

the error is less than a certain percentage in each area, to evaluate the confidence level of the 

predictions, and also calculate the average accuracy across all 56 areas for each week. 

Table 9 shows the weekly results achieved by the early stopping strategy solution.  The accuracy 

is recorded as well as the number of predictions that fell within 8, 5 and 2% of the actual value in 

each case.  The significance of these bands is that in the real world scenario there is a 5% range 

between green, meaning the service looks safe, and red where immediate action is required to 

improve service levels.  This 5% gap is given as amber and indicates uncertainty over whether 

service will be good or bad.  Thus to be able to have some confidence in the prediction when 

presented within these bands the prediction would have to fall within 5% of the actual the 

majority of the time.  The weekly level prediction shows an expected improvement over the daily 

accuracy, producing an average of 96.7% across all areas across all weeks.  We can also see that 

around 78.6% of the time the error of the prediction in an individual area is less than 5% increasing 

to 92.9% when extending the range to 8%.  This shows that decisions can be taken using this model 

with reasonable certainty, particularly as some of the higher error values are caused by areas with 

lower volumes.  Something the senior planner would have knowledge of. 

Table 9   Weekly accuracy across all areas using early stopping strategy 

< 8% < 5% < 2% Avg Acc < 8% < 5% < 2% Avg Acc

1 56 49 26 97.4% 46 41 22 96.4%

2 54 49 23 97.2% 52 42 21 96.4%

3 52 44 24 96.8% 52 39 18 96.3%

Week
Service Level 1 Service Level 2
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The situation improves again when using the dropout method, as shown in table 10.  The average 

accuracy now increases to 96.9% with 80.7% of the time predictions fall within 5% error.  Both 

methods produce results that greatly improve upon the current planning methods and provide a 

strong tool to assist the planning process.  We can also see from these results that dropout 

produces some slight improvements over using the early stopping strategy to avoid overfitting. 

Table 10  Weekly accuracy across all areas using dropout 

< 8% < 5% < 2% Avg Acc < 8% < 5% < 2% Avg Acc

1 55 49 28 97.6% 47 43 23 96.4%

2 54 49 24 97.3% 49 44 22 96.5%

3 54 46 23 96.9% 52 40 21 96.4%

Week
Service Level 1 Service Level 2

 

7.5 Conclusion 

In this chapter we identified the requirement for a service level predictor to assist the evaluation 

of plan solutions for the tactical plan when dealing with incomplete data.  This can also be used 

by automated planning methods as well as provide the opportunity to improve the current 

planning process.  We define this service level prediction problem, stating the general problem in 

equation (38) and introducing a specific real world example.  Initial analysis of the data uncovered 

the requirement to include 4 days plan states as part of the inputs and we further split the problem 

into predicting the success (equation 40) and failure (equation 41) separately to allow their 

combination to produce a service level prediction at any level of aggregation.    

We then described the neural network model used to solve these problems, including a method 

to dynamically filter the larger number of inputs created by the addition of the past plan states.  

The network setup was described as well as introducing two methods to avoid overfitting to the 

data set that we investigated in this chapter, the early stopping strategy and dropout. 

The resulting models were then evaluated on the real world data, comparing the two solutions to 

avoiding overfitting whilst evaluating the model performance.  Dropout was found to produce 

slightly better results than the early stopping strategy.  Additionally we showed that we were 

producing good daily accuracy to give a reasonable evaluation of plan solutions as well as give 

current planners indication of days where problems are occurring.  As well as that we showed that 

the accuracy at the weekly level, where it would be used within the current planning process, were 

very good providing a good tool to assist decisions relating to release of additional resources to 

specific areas. 
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This has successfully provided a means to solve the problem of properly evaluating plan solutions 

in the usual real world situation where there is not data available to the level of detail required to 

calculate these directly.  This model can therefore be used as part of the solution evaluation for 

the overall tactical planning problem. 
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Chapter 8 

A Surrogate Follower model for the Bi-level tactical 

planning problem   

8.1 Introduction 

In chapter 5 a bi-level framework was introduced to solve the capacity and demand decisions in 

the planning problem as separate leader and follower models.  The models used, a GA leader and 

linear follower, were found to effectively solve the planning problem in a static planning situation 

where updates are required only a couple of times per day.  However the time to reach a solution 

was found to still be a bit too long for use in a dynamic real world planning application where the 

model would need re-solved each time someone made a tweak to a plan or new information 

became available.  Further to this, the model required assumptions on the level of detailed data 

available as it still involved distributing individual resources’ time, albeit clustered into groups, to 

the range of skills they are capable of performing.  It also did not contain a full evaluation of the 

plan quality, which requires a proper calculation of the number of jobs completed on time, as 

there was no knowledge of the precise due dates of tasks in the model, only a rough target for 

percentage of available jobs to complete each day.  

In the subsequent two chapters these problems, often arising in real world situations, with making 

planning decisions with incomplete data were highlighted and explored.  First a solution to the 

demand allocation problem was developed in chapter 6.  This was followed by chapter 7 where a 

method to properly evaluate plans was developed.  This was the creation of a model to predict 

the number of jobs likely to be completed on time, which is a requirement for calculating whether 

the service level targets are being met.  These two models were developed using neural networks, 

meaning the bulk of the computational work can be done in advance during the training process, 

then the trained networks can be stored and fetched later for use when solving a specific planning 

problem.  

These two features, handling incomplete data and less computation required during run time, 

have the potential to be combined to perform as a surrogate for the follower model within the bi-

level framework.  We hypothesise that this will both allow the bi-level model to now perform on 

more real world data sets where a lot of future information is unknown and also may bring the 
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time to reach a good solution down to levels that would make it useable within a real world 

interactive planning application, where users (or data updates) are expected to be making 

frequent changes that requires re-computation of the plan. 

This chapter explores this hypothesis, first the planning problem from chapter 5 is re-defined to 

deal with more realistic data availability as per a real world scenario in section 8.2.  In section 8.3 

the model that will be used to solve this problem is defined, introducing a combination of the 

demand allocation and solution evaluation models from chapters 6 and 7 into a surrogate follower 

model for use in the bi-level tactical planning model.  Some experiments are performed on some 

real world data in section 8.4 to evaluate the model performance before concluding in section 8.5. 

8.2 Real world planning problem with incomplete data 

In chapter 5 a representative sub-problem of the overall tactical planning problem was defined.  

A selection of capacity levers to allow modelling of different decision types were chosen. Overtime 

adds capacity to a resource, contractors bring additional capacity directly applied to a skill and 

reduction moves resource capacity, e.g. for an area move or to be held in contingency to respond 

to emergency situations. Along with those the installation selling lever and the capacity-demand 

matching required to allow proper evaluation of these decisions.  The evaluation in this case was 

done using a target for the percentage of fault jobs to be completed each day along with target 

installation selling levels.   

Some assumptions inherent in this model are not true when working in a large number of real 

world scenarios however.  For example, the problem involved the allocation of resources to skills 

based on the known skillsets of each resource in the plan for each day.  In a real world scenario 

there has to be some allowance for resource absences, some of which are already known.  

However for events, such as meetings or training, not yet booked in the calendar, or something 

uncontrollable like illness, it is impossible to know which individual resources will be unavailable.  

This necessitates the modelling of resource at an aggregated level where the total volume of 

resource time rather than the individual resource time available is considered.  This loses the 

ability to match individual resources to their available skills.  There is a similar level of uncertainty 

within the demand, in that a large portion is forecast in the tactical planning phase and thus it is 

not possible to know precisely where or when a fault will occur or even what precise task type it 

will be.  To ensure some accuracy the tasks tend to be aggregated into workstacks by the skill 

required to complete them within more general geographic areas.  This makes it not possible to 
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directly calculate service levels as it can’t be known what the target completion date was for the 

tasks that don’t yet exist to calculate if they will be completed on time within the current plan. 

To account for this the tactical planning sub-problem from chapter 5 is redefined to account for 

the real world incomplete data issue. 

8.2.1 Tactical planning sub-problem with incomplete data 

In the tactical planning sub-problem with incomplete data, the resources (or resource groups once 

they have been grouped by the skill set they can perform) are further aggregated into resource 

types.  These types can be decided based on various features, e.g. they may be high, medium and 

low skilled or split by mobile (more likely to work in more than one area) and fixed (usually works 

in their home area) or any number of other groupings that makes sense for that data-set.  In the 

case study data-set there are 3 types, with the groupings decided based on mobile, fixed and new 

hires/apprentices.  Aggregating to this level loses the knowledge of exact skill makeup but is 

required when working with real world data where it is not possible to know which exact resources 

may be absent on any future periods of the plan, among other factors.   

For the sub-problem explored in this chapter we again select the three representative capacity 

levers, overtime, contractors and reductions.  These cover standard capacity modification moves 

of adding capacity to a resource, applying external capacity and moving resource capacity.  These 

levers modify the capacity available for the capacity-demand matching process and have usage 

costs and budgets (max constraints) associated with them.  Rather than apply these changes 

directly to resources however they instead are altering the aggregated buckets of capacity 

available to each resource type. 

Similarly to resources being aggregated by type, tasks are aggregated by the skill required to 

complete them and the general area they fall within into workstacks.  This is due to the increasing 

inaccuracy the more fine grained the attempted fault prediction is.  This aggregation occurs for 

both fault and installation skills, since in installation although the demand is not forecast there is 

no way of knowing precisely where the new appointments opened up for booking will be picked 

up. This also involves factors such as time to complete the task being averaged. 

The capacity available for each of these resource types is then allocated to tasks to allow 

evaluation of the capacity decisions.  This allocation phase also includes an additional lever which 

alters how many installation slots to open up for selling.  Available capacity is allocated to cover 

appointments first, those being installation slots that have been sold already or fault tasks that 
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have been appointed. This is followed by allocating capacity to cover expected (forecast) extra 

faults.  Any remaining capacity is then used to open those additional installation slots.  

Given the forecast nature of a majority of the plan the tasks that are having capacity allocated are 

not being actually scheduled.  That occurs in the operational planning stage (see fig 1.).  Instead 

the planning here is an attempt to estimate what will be completed each day in order to effectively 

evaluate the outcome given the current capacity and installation selling lever decisions.   

The final part of the problem is how a solution is evaluated.  A good planning solution would be 

one that maximises service levels and installation selling while minimising capacity use.  Evaluating 

the portion applied to lever use, capacity decisions and installation selling levels, just involves a 

direct costing of those values.  Judging expected service levels is more complicated however as 

they cannot be directly calculated on the aggregated data.  This is because the due date for each 

individual aggregated task cannot be known so it is not possible to know which are being done on 

time.  In practice to evaluate their plans a planner will keep track of the daily workstack level trying 

to keep it at what they judge to be a healthy level.  Too low and there may not be enough tasks 

available to keep resource utilisation high, too low and jobs will be failed.  This is not an entirely 

accurate method of plan evaluation however as the aggregated nature of the workstacks conceals 

some information.  A certain workstack level on one day might result in no failed tasks however 

on another day there may be more urgent tasks sitting concealed in the workstack requiring 

completion.  These extra urgent tasks will result in some failures if the workstack is maintained at 

the same level as previously.  For the purposes of this problem we will instead be predicting the 

expected success rates based on the current plan data to provide a more accurate evaluator of 

solution evaluation. 

8.3 Bi-Level Model with NN based Follower Surrogate 

In this section the work to develop the bi-level model in chapter 5 is combined with the neural 

network models developed in chapters 6 and 7 to predict the task completions and service level 

outcomes respectively.  These can replace the previous linear capacity-demand allocation follower 

model to allocate the capacity to tasks and evaluate the resulting solution.  The models utilising 

the parameters chosen for them during those chapters.  This follower can both still produce 

solutions on the incomplete data and also, we hypothesise, require less computation to do so. The 

GA leader model from 5.2.2 is re-used with the linear capacity-demand matching follower model 

replaced with the surrogate defined in the rest of this section.  In 8.3.1 we define the inputs for 

the surrogate model.  The demand allocation part of the surrogate is defined in 8.3.2 making use 
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of the task completion NN model.  Finally the method to evaluation the surrogate solutions is 

defined in 8.3.3 utilising the service level prediction NN model. 

8.3.1 Surrogate Follower Model Inputs 

 

The left hand side of fig. 25 shows the inputs used by the surrogate model.  Some of these have 

been seen in previous chapters, however some are new and a consequence of working with real 

world data. These are: 

 Capacity - The current capacity in the plan, modified by the capacity lever decisions taken 

by the leader 

 Workstacks - The tasks making up the demand are aggregated together by the skill 

required to complete them into workstacks.  Each workstack has an initial value, which is 

the current backlog of tasks for that skill at the start of the plan. 

 Appointments – This is the minimum tasks that have to be completed for each day.  The 

value varies by day and skill depending on the number of installation appointments 

booked or fault tasks that require site visits at a specific time/day. 

NN 
Models 

Rules 
Model 

Capacity 

Workstacks 

Productivity 

Attrition 

Appointments 

Inputs for period 

Planned 
Completions 

Outputs for period 

Selling Ratio 

Expected Fault Completions 

Updated 
Workstacks 

WS 
Update 

Intakes 

Planned Completions 

Fig. 25 Single period of Follower Model 
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 Productivity – Each resource type has a productivity for each skill which indicates how 

much of their available time it takes to complete one task requiring that skill.  This links 

the capacity, which is in available time, to demand which is in task completions. 

 Attrition – This comes in two types, “on the day” and “before the day” and is estimated 

for each day of the plan.  The values indicate a proportion of tasks that are removed from 

the plan on each day as they are not expected to be completed.  

o “Before the day” - jobs expecting to disappear from the plan before that future 

date becomes today, e.g. through customer cancellations.   

o “On the day” – models tasks where it is discovered on the actual day of 

implementation that they cannot be completed for various reasons, such as no 

one is there to provide access or the resource discovers they cannot complete the 

task.  

 Selling Ratio – The ratio at which additional capacity should be distributed to installation 

skills.  This is used to ensure realistic spread of appointment slots are made available for 

each installation skill. 

 Intakes -   For the fault skills they have a forecast intake indicating new tasks added to 

their workstacks in each period of the plan.  The installation skills have no new intake, 

instead new tasks are added  through the installation selling lever within the model 

8.3.2 Surrogate Model Demand Allocation 

Capacity-demand allocation in this model is performed using a combination of the completions 

prediction NN model from chapter 6 and a number of capacity allocation rules.  The rules are 

required for two purposes, to fill in the skills not covered by the model (as it only predicts the fault 

jobs, does not set the installation selling levels) and to ensure the output is a valid plan that meets 

all constraints.  Fig 25. Shows how the NN and the rules combine to create the single period model.  

The capacity, modified by the leader model, and current workstack value are used as input to the 

NNs which produce the expected fault job completions used, along with the capacity, 

appointments, productivities, attrition, and selling ratio, as inputs for the rules.  These then 

allocate the completions to all the skills for that period.  The final step is to update the workstacks 

for all skills by adding on the intake for that period and subtracting the planned completions.   

The input for this surrogate model has values for all inputs for all periods, except for the required 

workstack value as it cannot be known what the workstack will be on a given period unless the 
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completions running up to that period have already been set.  For this reason the model is 

repeated for each period, by starting with the initial workstack levels for the first period then for 

every subsequent period the updated workstacks from the previous period are used.  This process 

continues, running for one period at a time, till the end of the plan is reached and completions 

and workstack levels for all periods have been generated. 

The simple demand allocation rules model is seen in fig 26.  These were generated based on the 

real world planning process.  First capacity is allocated to skills to ensure the minimum for each 

skill is met, e.g. that any appointed tasks are covered.  Then, if any capacity is remaining, the rules 

will allocate capacity to top up the fault skill completions to the levels predicted by the NN 

completions model.  This is done to ensure enough capacity is ring-fenced to cover the expected 

fault completions requirements.  Finally, any remaining capacity is used for additional installation 

job selling.  The remaining capacity is allocated to installation jobs using the selling ratio.  This is 

often derived from the past average selling levels for each skill.  This means the lever deciding the 

installation selling levels, seen in the linear follower model, is no longer modelled as a lever, 

instead is just calculated based on the excess capacity after appointments and faults are covered.  

However, it could be argued this means it is indirectly set by the leader decisions as any excess 

capacity that it creates will be applied to installation selling.  If at any step of the chain there is not 

enough capacity to cover what is required then the completions required at that stage are reduced 

proportionally to their volume till the requirements fit within the capacity and then the process 

exits.   

 

8.3.3 Surrogate Model Solution Evaluation 

The solution reached by the follower model is evaluated in two parts.  The benefits from 

installation selling can be directly calculated by giving a weight to the selling for each skill.  The 

penalty associated with insufficient fault skill completions cannot be directly calculated as 

Allocate capacity to meet 
skill minimums

Top up fault skills to 
levels predicted by 

models

Allocate remaining 
capacity to installation 

selling

Fig. 26 Follower Model Rules Flow  
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discussed.  For this we will instead use the service level prediction NN to predict the expected fault 

task success rate based on the current state of the plan variables. 

The demand allocation process generates the required completions and workstack inputs for the 

service level prediction model.  The required intakes and capacities that make up the final two 

inputs are simply those that are part of the overall problem inputs.  This produces the expected 

success and failure rates by service level for each period of the plan. These are used to calculate 

the percentage of required tasks successfully completed each day which then, along with the 

configured percentage targets, give a penalty cost to fault tasks not meeting the requirements.  

This is added to the benefit associated with the installation selling to give the overall fitness for 

the follower models current solution.   

8.4 Results 

In this section of the chapter the bi-level model with the new surrogate follower defined in 8.3 is 

tested on the real world case study data used in chapter 5 along with the historical datasets from 

chapters 6 and 7 to be used to train the neural networks.  First the data used is outlined in 8.4.1 

along with highlighting some restrictions imposed to properly simulate a real world planning 

activity. This is followed by the experimental technique used in 8.4.2 and then the results and their 

analysis in 8.4.3. 

8.4.1 Experiment Data 

The same real world planning dataset for a week in October 2017 from chapter 5 was re-used for 

these experiments but with the added restrictions on knowledge of available capacity that would 

have been available when planning for that week at the time.  Namely that when the plan was 

created, on the first day of the week the data is from, it could not be known for any future days 

what precise resources may have been unavailable.  Thus an accurate skill breakdown, as 

discussed in previous chapters, is not available for the resources.  Instead the data used here is 

the resources aggregated into three resource types with no skill sets allocated as no direct 

allocation is possible.   

Additionally, 6 months of historical data, for the previous 6 months in 2017, was used to train the 

demand allocation neural networks and the service level prediction networks.  This included 

workstack, intake, and completions data for the 13 skills, resource capacity for the three resource 

types and the success and failure volumes for tasks on the two most common service levels.  This 

data had similar ranges as the data sets used in the previous chapters described in 6.3 and 7.2.2. 
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Ten anonymised areas were again selected from the dataset to give the 10 different problem 

instances.  They were selected to provide a mix of predicted service level outlooks to test how the 

model behaves in different scenarios.  For each area the decisions taken by the planners were also 

available to provide a comparator.  It should be noted that this data cannot be used for accuracy 

comparisons, since the different decisions taken for capacity levels would naturally have led to 

different actual outcomes on those days.  This is the reason that the results will be compared with 

the planners’ decisions rather than with the actual results.  This allows evaluation of whether the 

model is taking good decisions, e.g. if in the planned data we can see that the service level 

predictions were too low then we’d expect the model to be providing more capacity than was 

there in the actual plans for those days. 

8.4.2 Experimental Method 

The model was run on each of the 10 datasets with the evolution set to stop after 10 generations 

of stagnation, the same setting used in chapter 5 as this allows for stopping early when 

convergence is quick or for running longer if a lot of exploration is required.  The mutation 

probability for all 3 sections of the chromosome were set to 0.05 with the crossover probability of 

0.85, again the same as those used for the GA leader in chapter 5.  The overtime budget was set 

to 500 and the contractors to 1800 which were both slightly higher than the highest amount used 

by any of the planners in the problem instances.  This allows the algorithm the leeway to decide 

to use a bit more than was actually used whilst still keeping the values realistic.  The maximum 

amount of reductions allowed per day was set to 20, the same value from the previous 

experiments.  After the models had reached their stopping point the resulting completions and 

capacity lever values were recorded.  These were then input into the service level prediction 

model to be compared with the expected service levels from the planners’ decisions in those 

instances. 

As with the previous chapters the model was implemented using java 1.7 with the watchmaker 

framework 0.71 used to implement the leader GA and the NN based follower implemented within 

the fitness function using Encog with the models tuned to the same parameters as those used in 

chapters 6 and 7.  This was then all run on a windows 8.1 Lenovo ThinkPad P50 laptop running an 

Intel core i7 6820HQ processor with 40GB of RAM. 
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8.4.3 Results Analysis 

Given the sensitivity of using real world data we cannot directly report the service level 

percentages achieved here.  For the purposes of evaluating this model we will analyse the service 

levels using a RAG (red, amber, green) system.  Red will indicate a service level result that is below 

target, amber a result that is between target and 5% above target and thus is in danger of failing.  

Finally green indicates a safe service level that is more than 5% above target.  In this case the 

target is the percentage of jobs successfully completed on time.  The target percentage being the 

levels at which additional penalty payments will start to be charged.  In order to reduce the risk of 

dipping below this level then the above amber buffer is used to indicate to planners and 

management which areas may be at risk of dipping below that level.    

In Table 11 we can see the decisions and results from the algorithm compared with those actually 

planned.  We can see the algorithm has improved the expected service level outcomes across the 

board, taking the initial estimate of 2 red, 5 amber and 3 green areas and improving it to 8 green 

and 2 amber.  Of the amber areas the historical data showed that amber was the best achieved 

within the historic data thus it wasn’t possible for the algorithm to get a green prediction.  This 

may highlight one potential problem with the approach as the algorithm has applied a lot of 

overtime and contractors to both these areas in an attempt to get them to reach green.  In reality 

the amber may have been accepted in this case without so much extra resource applied in a failed 

attempt to improve the situation to green since amber is only danger of failing not an indication 

of actual failure.  This could be mitigated however by more careful configuration of the overtime 

and contractor constraints to prevent too much being applied.  Across the 10 areas we can see 

the algorithm applying an average of 13.2 additional overtime to achieve this service level uplift, 

however at the same time it reduces contractor use by 2.48.  This is likely due to service levels 

only being attached to fault skills whereas within this dataset contractors could only be applied to 

installation skills. 

 

Table 11  Planners vs. Algorithm Comparison 

Area 

Service Level RAG Average Per Day 

Planners Algorithm Overtime Contractors Resources 

Area 1 Amber Green 3.4 36.4 -4.1 

Area 2 Red Amber 24.1 50.2 -0.5 
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Area 

Service Level RAG Average Per Day 

Planners Algorithm Overtime Contractors Resources 

Area 3 Green Green 6.1 -41.1 -2.6 

Area 4 Green Green 11.2 -31.4 -2.9 

Area 5 Green Green -6.1 11.6 -1.1 

Area 6 Red Green 34.1 -59.1 -2.4 

Area 7 Amber Green 17.9 -31.2 -2.6 

Area 8 Amber Amber 15.1 73.1 -0.9 

Area 9 Amber Green 6.1 -2.1 -1.2 

Area 10 Amber Green 20.1 -31.2 -2.6 

Overall 2R 5A 3G 2A 8G 13.2 -2.48 -2.09 

 

8.4.4 Solution run time 

The other element we record in these experiments is the solution run time.  This varied across the 

areas with the average ranging from 31 minutes up to 2 hours 40 minutes.  The average across all 

instances being 1 hour 13 minutes.  This is an improvement over the linear model however still 

not quite into the realms of the performance required for a dynamic tactical planning application.  

This was run on a windows 8.1 laptop however.  With the potential to parallelise the solution 

evaluations plus the application of more powerful hardware it should be possible to improve the 

solution times further. 

8.5 Conclusions 

From the experiment utilising real world data performed in this chapter we can see that we can 

effectively utilise a surrogate consisting of the completions and service level prediction neural 

network models within the bi-level model to solve the tactical planning problem in a real world 

scenario.  The use of the surrogates effectively allows for an automated solution to be found in 

the scenario where some details in the data required by the optimisation models are not available.  

We can see it improves the predicted service level outlook when compared against the planner in 

almost all cases.  However a limitation is uncovered in that due to the nature of the neural 

networks that are used it cannot reach a situation that does not exist within the historical data.  
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This is observed in two of the cases where it capped out at an amber service level prediction whilst 

applying a lot of additional capacity.  This would require some manual intervention when used as 

an automated system to ensure these capacity levers were capped a bit lower in these cases. 

The run time was observed to be an improvement with the addition of the surrogates, though not 

quite at the level required of a dynamic planning model as yet.  However this may be improved if 

run on more powerful hardware.  This work does show the concept works and that surrogates can 

be used to handle the real world planning problem to produce effective automated plans.   

Further work from this could be undertaken to further improve the model performance. Some 

potential areas to explore could be parallel processing, an improved leader model, or further 

refinements to the follower surrogate. 
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Chapter 9 

Conclusions and Further Work 

In this thesis we investigated an under-represented complex real world planning problem that has 

great impact. We updated the definition of the tactical planning problem to more closely match 

the real world application within large service industries.  This planning layer is often overlooked 

however in this thesis we aimed to show that effectively solving this problem could have real 

world benefits for a member of the service industry.  During the thesis we developed methods to 

effectively solve this problem even under real world restrictions to data availability.  This has 

resulted in some practical benefit as algorithms developed in these chapters have been applied 

within real world applications already.  These have had tangible benefits where deployed and this 

is explored in the impact section (9.2) of this chapter.  The models developed are not without the 

limitations however and these will also be explored in the further work in 9.3.  First we will go 

back to the research objectives defined in 1.4.2 to evaluate how these have been covered in this 

thesis.  

9.1. Research Objectives Revisited 

9.1.1 Develop an initial formulation for the tactical planning problem to capture the key 

features (O1) 

This objective was covered by chapter 3 where a linear model formulation of the tactical planning 

problem was created.  The model created effectively captured all the key features of the tactical 

planning problem and served as an initial point for the remainder of the modelling work within 

the thesis.  It was also shown that this full model formulation was too complex to solve within any 

reasonable time frame as the number of decision variables increased rapidly as initial areas, skills, 

resources, etc. were added.  This helped to further motivate the work undertaken in the rest of 

the thesis to investigate breaking down the problem into linked sub-problems. 

9.1.2 Determine if this could be modelled as a combination of linked sub-problems to 

improve solution time (O2) 

The literature review undertaken in chapter 2 completed this objective effectively.  It was 

identified that a portion of the tactical planning problem defined in chapter 1 and then formulated 

in chapter 3 had the elements of a common problem in the literature, that of the generalised 
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assignment problem. When this problem was removed it left the capacity levers from the tactical 

plan as the other sub-problem.  The interactions between these problems were seen to match 

that of a bi-level model described in the literature.  The capacity lever leader settings the 

constraints on the allocation problem follower fit well with the nested bi-level solution approach.  

Although it is described as potentially being computationally expensive the utilisation of the 

leader-follower framework to allow separate modelling of each portion did still suggest a potential 

to find a way to improve the solution time over the monolithic problem model approach.  Chapter 

5 eventually showed this to be true when the GA leader and linear follower model solved all the 

problems in under 8 hours where the CPLEX solver had not been able to solve the full problem 

within the 8 hours it was run for in an earlier test on the full model.  Finally chapter 8 further 

improved on the solution time after introducing a surrogate which further showed the potential 

of the bi-level framework approach for reducing the time take to solve the tactical planning 

problem.  

9.1.3 Investigate suitable algorithms to solve these sub-problems (O3) 

The literature review in 2.1 and 2.2 picked out solution methods previously used for the allocation 

sub-problem and the overall bi-level framework respectively.  In chapter 4 we tested two methods 

found in both reviews, the linear solver and genetic algorithm.  We tested this against a greedy 

hill climber from a real world planning application.  The investigation showed that for the 

allocation sub-problem the linear solver was the most suitable as it was faster and also reached 

optimal in all cases.  However the GA performed very well also and identified itself as a candidate 

to apply to the leader model in the overall bi-level framework. 

9.1.4 Develop a suitable framework to optimise the linked sub-problems (O4) 

Following on from the bi-level suitability identified in the literature review it was chosen as the 

framework to develop.  In chapter 4 we had identified the linear solver as best to use for the 

capacity-demand allocation follower. Out of the same chapter the performance of the GA had 

motivated the selection of it to use as the leader for the initial testing of the bi-level framework in 

chapter 5.  In this chapter we were able to show that the bi-level framework could effectively solve 

the linked sub-problems to provide a good solution for the tactical planning problem that 

improved upon that of the real world planners.  The solution time was seen to be too long to use 

in a dynamic planning scenario where the model would be run multiple times after data changes.  

It was however capable of solving it within a time frame of 1 to 7 hours meaning it could be used 

in a static planning scenario where the model needed re-solved less frequently. 
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9.1.5 Investigate potential solutions to deal with the real world situations where not all data-

points are available (O5) 

This objective was covered in both chapters 6 and 7, where neural network models were 

developed to predict completions and service levels respectively.  These models are capable of 

providing solutions in real world scenarios where aggregated rather than detailed data is used.  

The completions model can provide the capacity allocation for the capacity-demand allocation 

model.  The service level prediction model was shown to be an effective way to evaluate the likely 

plan outcome when success rate for tasks cannot be directly calculated.  Both models were found 

to have good accuracy with the completions model providing better results than those given by a 

manual planner. 

9.1.6 Determine if these can be used within the linked optimisation framework to produce 

feasible solutions to the planning problem in real world scenarios (O6) 

This final objective was met in chapter 8 where a surrogate was developed from a combination of 

the neural network completions and service level prediction models.  This surrogate, when slotted 

into the follower slot in the bi-level framework, was able to provide a tactical planning solution in 

real world scenarios.  The surrogate was able to provide plan outputs in situations where only 

aggregated data was available.  The resulting plans were shown to improve on the expected 

service level outcomes achieved by a manual planner on the same data.  The solution time for this 

model was also shown to be improved over using the linear solved follower, however it still wasn’t 

quite into the solution times required to be useable in a dynamic planning scenario.  The tests 

were run on a low powered laptop however so there is still scope to bring the solution times down 

further through parallelisation and deployment on a more powerful server.   

9.2 Research Impact 

The work in this thesis has provided great impact already.  Four publications have been generated 

from this work, from the contents of each of the chapters from 4 to 7.  There is also an intention 

to write up the overall work and submit it as a journal paper once the thesis is completed.   

There has also been a real world impact from this research as the models and algorithms 

developed during this thesis have been developed into practical applications that are already 

deployed in a large telecoms company.  The most impactful contribution has been from the 

surrogate model that was produced for chapter 8.  This has been deployed into a planning 

application that is being used across the whole of the UK.  Here it automates the capacity-demand 
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matching portion of the planning process while the planner takes on the leader model role and 

focuses on the capacity decisions.  Analysis performed by the end user to investigate the impact 

of this shift showed significant savings were generated due to the increased accuracy of the plan 

as well as the time saved during the planning process.  Fig. 27, 28 and 29 show the anonymised 

results of this analysis.  The values have been normalised to be a proportion of the initial April 

payment amount but to give an idea of scale the initial April payments were all in the hundreds of 

thousands.  Fig 27. Shows appointment availability payments is a penalty not mentioned thus far 

in this thesis.  It is applied if there is not an available installation appointment available within a 

set amount of days.  If say the target is 5 working days then the planners must ensure to have new 

appointments available for booking on each of the installation skills from the 6th working day 

onwards.  

 

Fig. 27  Appointment availability penalty payments trend 

 

Missed appointment penalties shown in fig 28 are more self-explanatory as these are penalty 

payments applied if an engineer does not complete an appointed job on the appointed day.  The 
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final one, faults missed commitments in fig 29, is the penalty related to failing to meet target 

service levels.    

 

Fig. 28  Missed appointments penalty payments trend 

 

 

Fig. 29  Faults missed commitments penalty payments trend 

 

The analysis showed there was a reduction of about 50% in monthly appointment availability 

payments, about 35% in monthly missed appointment payments and 27% in faults missed 

commitments payments. Given that in this large telecoms company each of these payments were 

in six figures monthly that is a very large saving showing a significant impact from this research.  

The reason for the reductions brought out in the analysis performed was that for the faults missed 
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commitments and the missed appointments the reduction was due to the improved plan 

accuracy.  This ensured that enough capacity was there to cover faults and not too many 

installation jobs were being sold.  The appointments availability payments improvement however 

was due to the removal from human bias from the process.  The algorithm was accurately showing 

when there wasn’t enough capacity to produce appointments within the correct time scale which 

allowed correct identification of which areas required additional resourcing.  When a human 

planner was performing the process however they were found to often “tweak” their plans to 

make them look better by adding installation selling within the targets even when it wasn’t 

available.  This was obscuring the areas that were needing assistance.  

9.3 Further Work 

This final section will outline areas of further improvement that could be undertaken on this work, 

as well as some future avenues for research.   

Although this research met all the research objectives it still fell slightly short on reducing the 

solution times to levels that would make the whole model usable in a dynamic planning 

application.  As such only the surrogate has been deployed in practice thus far.  This means there 

are still avenues for research around reducing the computational complexity of this problem.  This 

could be through development of alternate leader or follower models to fit into the bi-level 

framework, or through the introduction of parallelism into the computation process.  A more 

customised heuristic to the capacity lever setting problem may perform better than the more 

general GA metaheuristic approach for example.   

Further areas of research around the tactical planning problem definition could also focus on 

developing methods to deal with the uncertain outcomes from decisions.  Some levers, such as 

the overtime or installation selling levers, have an uncertain outcome on the plan.  The decision 

may be taken to use 10 hours of overtime tomorrow or open 20 installation appointments next 

week, however there is no guarantee that these will actually happen.  The overtime is predicated 

on enough members of the workforce agreeing to pick up some overtime, similarly the installation 

appointments being opened up requires a customer to actually decide to book them.  This was 

not covered in this thesis but may be an interesting avenue for future research, possibly involving 

some sort of learning process by the algorithm to learn what values of specific levers are likely to 

actually happen if set on different days of the plan. 

A further future avenue could focus on a different kind of uncertainty, that on the forecast values 

in the plan.  Currently the forecast for new intake jobs is a single value per day as this is what a 
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human planner can reason with.  However the reality is that the forecasting models produce more 

of a probability distribution of likely outcomes with the mean just being entered in for use in the 

plan.  With the move to the use of automation in the planning process, algorithms could be 

produced that reason with this distribution instead of the point value.  Thus it could create a plan 

that is more robust and can cope with the potential fluctuations in the actual fault levels that 

occur. 
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