7 research outputs found

    Error Rate Analysis of GF(q) Network Coded Detect-and-Forward Wireless Relay Networks Using Equivalent Relay Channel Models

    Full text link
    This paper investigates simple means of analyzing the error rate performance of a general q-ary Galois Field network coded detect-and-forward cooperative relay network with known relay error statistics at the destination. Equivalent relay channels are used in obtaining an approximate error rate of the relay network, from which the diversity order is found. Error rate analyses using equivalent relay channel models are shown to be closely matched with simulation results. Using the equivalent relay channels, low complexity receivers are developed whose performances are close to that of the optimal maximum likelihood receiver.Comment: 28 pages, 10 figures. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Cooperative Transmission in Mobile Wireless Sensor Networks with Multiple Carrier Frequency Offsets: A Double-Differential Approach

    Get PDF
    As a result of the rapidly increasing mobility of sensor nodes, mobile wireless sensor networks (MWSNs) would be subject to multiple carrier frequency offsets (MCFOs), which result in time-varying channels and drastically degrade the network performance. To enhance the performance of such MWSNs, we propose a relay selection (RS) based double-differential (DD) cooperative transmission scheme, termed RSDDCT, in which the best relay sensor node is selected to forward the source sensor node’s signals to the destination sensor node with the detect-and-forward (DetF) protocol. Assuming a Rayleigh fading environment, first, exact closed-form expressions for the outage probability and average bit error rate (BER) of the RSDDCT scheme are derived. Then, simple and informative asymptotic outage probability and average BER expressions at the large signal-to-noise ratio (SNR) regime are presented, which reveal that the RSDDCT scheme can achieve full diversity. Furthermore, the optimum power allocation strategy in terms of minimizing the average BER is investigated, and simple analytical solutions are obtained. Simulation results demonstrate that the proposed RSDDCT scheme can achieve excellent performance over fading channels in the presence of unknown random MCFOs. It is also shown that the proposed optimum power allocation strategy offers substantial average BER performance improvement over the equal power allocation strategy

    Performance Analysis of Two-Way Relaying with Non-Coherent Differential Modulation

    Full text link

    Threshold-Based Relay Selection for Cooperative Wireless Network

    Get PDF
    Cooperative communication plays a vital role in the wireless domain recently due to its numerous benefits such as coverage extension, improvement in spectral efficiency, and throughput by increasing the complexity of the system. Furthermore, security becomes a key issue for implementing a cooperative communication system. In this thesis, the complexity is reduced by employing differential modulation as they do not require complete channel state information (CSI). Different threshold-based relay selection schemes are also proposed to reduce complexity. Furthermore, the security issue in the cooperative wireless network is addressed by enhancing the physical layer security using the proposed double threshold-based optimal relay selection scheme
    corecore