10,248 research outputs found

    Quantum Discord, Decoherence and Quantum Phase Transitions

    Full text link
    Quantum discord is a more general measure of quantum correlations than entanglement and has been proposed as a resource in certain quantum information processing tasks. The computation of discord is mostly confined to two-qubit systems for which an analytical calculational scheme is available. The utilization of quantum correlations in quantum information-based applications is limited by the problem of decoherence, i.e., the loss of coherence due to the inevitable interaction of a quantum system with its environment. The dynamics of quantum correlations due to decoherence may be studied in the Kraus operator formalism for different types of quantum channels representing system-environment interactions. In this review, we describe the salient features of the dynamics of classical and quantum correlations in a two-qubit system under Markovian (memoryless) time evolution. The two-qubit state considered is described by the reduced density matrix obtained from the ground state of a spin model. The models considered include the transverse-field XY model in one dimension, a special case of which is the transverse-field Ising model, and the XXZXXZ spin chain. The quantum channels studied include the amplitude damping, bit-flip, bit-phase-flip and phase-flip channels. The Kraus operator formalism is briefly introduced and the origins of different types of dynamics discussed. One can identify appropriate quantities associated with the dynamics of quantum correlations which provide signatures of quantum phase transitions in the spin models. Experimental observations of the different types of dynamics are also mentioned.Comment: 20 pages, 6 figures, To appear in Int. J. Mod. Phys. B, special issue "Classical Vs Quantum correlations in composite systems" edited by L. Amico, S. Bose, V. Korepin and V. Vedra

    Non-Markovianity and Quantum Correlations in Qubit-Systems

    Get PDF
    In this Thesis I discuss the exact dynamics of simple non-Markovian systems. I focus on fundamental questions at the core of non-Markovian theory and investigate the dynamics of quantum correlations under non-Markovian decoherence. In the first context I present the connection between two different non-Markovian approaches, and compare two distinct definitions of non-Markovianity. The general aim is to characterize in exemplary cases which part of the environment is responsible for the feedback of information typical of non- Markovian dynamics. I also show how such a feedback of information is not always described by certain types of master equations commonly used to tackle non-Markovian dynamics. In the second context I characterize the dynamics of two qubits in a common non-Markovian reservoir, and introduce a new dynamical effect in a wellknown model, i.e., two qubits under depolarizing channels. In the first model the exact solution of the dynamics is found, and the entanglement behavior is extensively studied. The non-Markovianity of the reservoir and reservoirmediated-interaction between the qubits cause non-trivial dynamical features. The dynamical interplay between different types of correlations is also investigated. In the second model the study of quantum and classical correlations demonstrates the existence of a new effect: the sudden transition between classical and quantum decoherence. This phenomenon involves the complete preservation of the initial quantum correlations for long intervals of time of the order of the relaxation time of the system.Siirretty Doriast

    The sudden change phenomenon of quantum discord

    Full text link
    Even if the parameters determining a system's state are varied smoothly, the behavior of quantum correlations alike to quantum discord, and of its classical counterparts, can be very peculiar, with the appearance of non-analyticities in its rate of change. Here we review this sudden change phenomenon (SCP) discussing some important points related to it: Its uncovering, interpretations, and experimental verifications, its use in the context of the emergence of the pointer basis in a quantum measurement process, its appearance and universality under Markovian and non-Markovian dynamics, its theoretical and experimental investigation in some other physical scenarios, and the related phenomenon of double sudden change of trace distance discord. Several open questions are identified, and we envisage that in answering them we will gain significant further insight about the relation between the SCP and the symmetry-geometric aspects of the quantum state space.Comment: Lectures on General Quantum Correlations and their Applications, F. F. Fanchini, D. O. Soares Pinto, and G. Adesso (Eds.), Springer (2017), pp 309-33

    Frozen and Invariant Quantum Discord under Local Dephasing Noise

    Full text link
    In this chapter, we intend to explore and review some remarkable dynamical properties of quantum discord under various different open quantum system models. Specifically, our discussion will include several concepts connected to the phenomena of time invariant and frozen quantum discord. Furthermore, we will elaborate on the relation of these two phenomena to the non-Markovian features of the open system dynamics and to the usage of dynamical decoupling protocols.Comment: 29 pages, 8 figure

    The rise and fall of quantum and classical correlations in open-system dynamics

    Get PDF
    Interacting quantum systems evolving from an uncorrelated composite initial state generically develop quantum correlations -- entanglement. As a consequence, a local description of interacting quantum system is impossible as a rule. A unitarily evolving (isolated) quantum system generically develops extensive entanglement: the magnitude of the generated entanglement will increase without bounds with the effective Hilbert space dimension of the system. It is conceivable, that coupling of the interacting subsystems to local dephasing environments will restrict the generation of entanglement to such extent, that the evolving composite system may be considered as approximately disentangled. This conjecture is addressed in the context of some common models of a bipartite system with linear and nonlinear interactions and local coupling to dephasing environments. Analytical and numerical results obtained imply that the conjecture is generally false. Open dynamics of the quantum correlations is compared to the corresponding evolution of the classical correlations and a qualitative difference is found.Comment: 35 pages, 10 figures. Revised according to comments of the referees. Accepted for publication in Phys. Rev.

    Non-Markovian dynamics in open quantum systems

    Get PDF
    The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry and quantum information. In close analogy to a classical Markov process, the interaction of an open quantum system with a noisy environment is often modelled by a dynamical semigroup with a generator in Lindblad form, which describes a memoryless dynamics leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence and correlations. Here, recent results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of memory effects. The general theory is illustrated by a series of examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This article further explores the various physical sources of non-Markovian quantum dynamics, such as structured spectral densities, nonlocal correlations between environmental degrees of freedom and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments on the detection, quantification and control of non-Markovian quantum dynamics are also discussed.Comment: 26 pages, 10 figure

    The relation between the quantum discord and quantum teleportation: the physical interpretation of the transition point between different quantum discord decay regimes

    Full text link
    We study quantum teleportation via Bell-diagonal mixed states of two qubits in the context of the intrinsic properties of the quantum discord. We show that when the quantum-correlated state of the two qubits is used for quantum teleportation the character of the teleportation efficiency changes substantially depending on the Bell-diagonal-state parameters, which can be seen when the worst-case-scenario or best-case-scenario fidelity is studied. Depending on the parameter range, one of two types of single qubit states is hardest/easiest to teleport. The transition between these two parameter ranges coincides exactly with the transition between the range of classical correlation decay and quantum correlation decay characteristic for the evolution of the quantum discord. The correspondence provides a physical interpretation for the prominent feature of the decay of the quantum discord.Comment: 6 page
    corecore