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Abstract

In this Thesis I discuss the exact dynamics of simple non-Markovian systems.
I focus on fundamental questions at the core of non-Markovian theory and
investigate the dynamics of quantum correlations under non-Markovian deco-
herence.

In the first context I present the connection between two different non-
Markovian approaches, and compare two distinct definitions of non-Marko-
vianity. The general aim is to characterize in exemplary cases which part of
the environment is responsible for the feedback of information typical of non-
Markovian dynamics. I also show how such a feedback of information is not
always described by certain types of master equations commonly used to tackle
non-Markovian dynamics.

In the second context I characterize the dynamics of two qubits in a com-
mon non-Markovian reservoir, and introduce a new dynamical effect in a well-
known model, i.e., two qubits under depolarizing channels. In the first model
the exact solution of the dynamics is found, and the entanglement behavior
is extensively studied. The non-Markovianity of the reservoir and reservoir-
mediated-interaction between the qubits cause non-trivial dynamical features.
The dynamical interplay between different types of correlations is also inves-
tigated. In the second model the study of quantum and classical correlations
demonstrates the existence of a new effect: the sudden transition between
classical and quantum decoherence. This phenomenon involves the complete
preservation of the initial quantum correlations for long intervals of time of the
order of the relaxation time of the system.
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1 Introduction

If we aim at describing Nature in a quantum mechanical way we need to con-
sider that realistic quantum systems are open. Quantum systems, in fact, live
in environments often affecting their properties in a non-negligible way. The
interaction with the environment is source of decoherence, causing destruction
of quantum properties and disappearance of quantum superpositions [1]. This
means that, in order to describe this type of systems, a different formalism
than the Schrodinger equation is generally needed. This new description is
offered by the theory of open quantum systems |2, 3].

The theory of open quantum systems plays a major role in many applica-
tions of quantum physics (quantum optics [4], condensed matter physics [5],
quantum chemistry [6], to name a few) and allows to investigate fundamental
aspects of quantum mechanics, such as the quantum measurement problem.

Open quantum systems are in general difficult to tackle, their equations
of motion can be in a form which cannot be solved, and therefore very of-
ten one needs to simplify the problem and make approximations. The theory
of Markovian open quantum systems relies on two approximations: the Born
or weak coupling approximation, and the Markov approximation. Markovian
quantum systems are certainly the most studied and characterized open quan-
tum systems |7,8|. There are, however, cases in which these two assumptions
are simply not admissible. Systems strongly interacting with their environ-
ments or building massive correlations with it have to be handled with more
complicated approaches. In order to deal with these systems we need a theory
of non-Markovian open quantum systems.

Despite the existence of many different techniques and the achievement of
many important results [9-13] non-Markovian quantum systems are not yet
fully understood. Fundamental questions at the heart of the theory do not
have yet a clear answer. What are non-Markovian systems? Which is the
general form of their equation of motion?

Driven by the will of solving this conundrum, great deal of effort has been
invested in the investigation of open systems beyond the Markov approxima-
tion. Based on the properties that many quantum systems show when the
Markov approximation is released, different definitions and measures of non-
Markovianity have been proposed [14-16]. One of them is based on the observa-
tion of flow-back of information from the environment into the system [14,17].

When open systems are constituted of many parts their dynamical fea-
tures become even more interesting. In fact multipartite quantum systems can
share peculiar types of correlations having no classical counterpart. Certainly



the most famous of them is entanglement [18]. Entanglement is a fundamen-
tal concept at the foundations of quantum mechanics. Moreover it is of key
importance in many applications of quantum information science [19].

As other quantum properties, entanglement is very sensitive to the presence
of the environment. The study of the open dynamics of entanglement reveals
that it can be lost in a finite time, phenomenon known as entanglement sudden
death [20]. This dynamical effect, first found in a Markovian scenario, acquires
much richer features when moving to the non-Markovian context [21]. In fact
the so-called memory effects characterizing non-Markovian systems can cause
the reappearance of entanglement after its death.

The general aim of my research is to contribute to the understanding of
non-Markovian systems, in particular, when considering quantum correlations.
In this Thesis I will review the results obtained during my PhD studies and
focus more specifically on the connections between two different approaches
and definitions of non-Markovianity, and on where the memory of the non-
Markovian environments resides.

I will present the exact solutions of simple but fundamental system-environ-
ment interaction models, namely two-state systems or, in the jargon of quan-
tum information, qubits. Studying the exact dynamics of models such as one
or two two-level atoms in a cavity gives us the chance to treat fundamental
problems and gain insight on the non-Markovian dynamics.

Our exact study of two atoms inside a cavity shows that despite the pres-
ence of the environment it is possible to have residual entanglement trapped
inside the system. This is due to the reservoir mediated interaction between
the atoms [22-24|. An even more surprising result is the discovery of a sudden
transition between classical and quantum decoherence. In fact we have shown
that for certain types of environment, there exists a quantum correlation more
general than entanglement [25,26] which is completely unaffected by the pres-
ence of the environment. This is the first evidence of a quantum property fully
robust against decoherence. There are indications that this quantum correla-
tion, known as discord, might be a resource in certain protocols of quantum
technology [27]. This gives an applicative importance to our result.

Here is a guideline to the structure of the Thesis. In Chapter 2 I intro-
duce the basic concepts of the theory of open quantum systems, focusing in
particular on the different definitions and techniques to study non-Markovian
dynamics. In Chapter 3 I present our effective description of memory and the
comparison between different definitions of non-Markovianity. In Chapter 4 I
introduce the concept of entanglement and present the results on the model



we have solved exactly: two qubits in a common non-Markovian reservoir. In
Chapter 5 I introduce the concept of discord and discuss the phenomenon we
have discovered, the sudden transition between quantum and classical deco-

herence. Finally in the Conclusions I will briefly summarize the main results
of the Thesis.



2 Open quantum systems

The theory of open quantum systems aims at describing the dynamics of quan-
tum mechanical systems interacting with their surroundings [2,3]. The impor-
tance of this theory stems from the fact that the assumption of a quantum sys-
tem completely isolated from the rest of the universe is only a simplification.
Indeed it is precisely the action of the environment which causes phenomena
such as decoherence and dissipation, threatening the quantumness of the state
of the system. Furthermore, the theory of open quantum systems allows to
address the quantum measurement problem in terms of decoherence induced
by the environment [1,28]. Understanding and describing decoherence is also
a key requirement for the development of all quantum technologies [29].

Unfortunately, tackling the dynamics of open quantum systems is not al-
ways an easy task. For this reason one needs to perform a series of approx-
imations in order to derive equations of motion for the state of the system,
possibly solve them, and thus gain insights into the dynamics [30].

Two of the main approximations commonly done to derive such an equation
of motion, also known as the master equation, are the Born and the Markov ap-
proximations. The first one amounts to assuming that the interaction between
the system and the environment is sufficiently weak. The second one neglects
short-time correlations between system and environment. When both these
assumptions are satisfied we say that the open quantum system is Markovian.

A milestone in the theory of open quantum systems is the Lindblad theorem
providing a full characterization of the Markovian dynamics [7,8]. Master
equations describing Markovian processes have a well defined mathematical
reference structure, called the Lindblad form. This structure guarantees that
the solution of the master equation represents a physical state at all times.

However the Born and the Markov approximations are not always valid.
There exist systems, e.g., strongly interacting with their environments [31,32],
for which the Born approximation breaks down. In other cases the structure
of the modes of the environment induces long lasting system-enviroment cor-
relations invalidating the Markov approximation [33]. For treating these sys-
tems it becomes necessary to have at hand alternative theoretical techniques
leading to non-Markovian master equations which can be analytically or nu-
merically solved. When going beyond the Markov approximation a series of
fundamental questions pop up: what are the most distinguishing features of
non-Markovian systems? How do we characterize the degree of Markovianity
or non-Markovianity of a system? And most of all, does a generalization of
the Lindblad theorem to non-Markovian systems exist? Most of the research



presented in this Thesis deals with these questions.
Let us begin with a brief review of the basic concepts and properties of
Markovian open quantum systems.

2.1 Markovian dynamics

Markovian systems are from both physical and mathematical points of view the
best characterized open quantum systems. The dynamics of the density matrix
of the system is described by the dynamical map V (¢) : p(t) = V(¢)p(0), sat-
isfying the positivity, complete positivity (CP) and semigroup properties [See,
e.g., Ref. [2,30]]. The positivity condition ensures that a positive operator is
mapped into a positive operator. The CP condition guarantees that density
operators in all possible extended Hilbert spaces are mapped into density op-
erators in the same extended Hilbert space. Finally the semigroup property is
given by V(¢1)V (t2) = V(t1 + t2).

The equation of motion ruling the dynamics of Markovian open quantum
systems is the celebrated Lindblad master equation®:

d 1 1
aps(t) = —Z[Hsms(t)]Jr; Vi <Ak:PS(t)AITg - 5142141@05(0 - 2,05(75)14};Ak> -

(1)
The equation above is a linear differential equation for the density matrix of
the system pg(t). The first term in the right hand side (r.h.s.) represents the
unitary part of the evolution induced by the Hamiltonian of the system Hg.
The second part is often called the dissipator and it describes the effect of the
environment on the system. The operators Ay appearing in the dissipator are
known as jump operators. The non-negative coefficients 7, having the dimen-
sion of the inverse of time, play the role of relaxation rates for the different
channels of the open dynamics.

One of the most widely used numerical approaches to solve Eq. (1) is
the Monte Carlo Wave Function Method (MCWF) [34]. The key idea of the
method is the generation of a large number of single wave function histories
|¥(t)) including stochastic quantum jumps mathematically described by the
jump operators Ag. In a time interval dt quantum jumps occur in the k-th
decay channels with a probability P, = (5t’yk<\Il(t)\ALAk]\I/(t)), proportional
to the decay rate of the channel. The dynamics of the density matrix of the

! Throughout the Thesis we set /i = 1.



system pg(t) can then be calculated as ensemble averages of single-wave func-
tion histories. The MCWF technique is not simply a numerical method but
allows also to grasp the dynamics of individual quantum systems such as sin-
gle trapped ions and photons in cavities [35]. In these systems indeed the
occurrence of quantum jumps has been experimentally verified [36-38|.

Master equation in the Lindblad form can be derived microscopically start-
ing from the von Neumann equation of the total closed system comprising of
the system of interest and the reservoir. This approach sheds light into the
physical meaning of the approximations on which Eq. (1) relies.

As already mentioned a first approximation is the Born or weak coupling
assumption. Other two key assumptions are factorized initial conditions (the
state of the total closed system is the product of the state of the system and
the state of the environment), and the stationarity of the environment (the
state of the environment does not change during the evolution). As a con-
sequence of the previous assumptions, the correlations between system and
environment, established during the time evolution, do not sensibly affect the
reduced dynamics of the open system [39].

Finally, the Markov approximation corresponds to assuming that the time
scale T7¢ over which the state of the system varies appreciably is large com-
pared to the time scale 7r over which the reservoir correlation function decays.
Performing the Markov approximation therefore amounts at a coarse-graining
on time scales of the order of 7g.

The reservoir correlation time and the reservoir correlation function are
usually linked to the shape of the spectrum of the environment, or spectral
distribution. By environmental spectral distribution we mean the function
describing how the open system couples to each degree of freedom of the en-
vironment. For simple structures of the environmental spectrum, 7 can be
directly related to the inverse of the width of the spectrum. In fact, it turns
out that the Markov approximation holds when the environment has an al-
most flat spectral distribution. On the contrary, whenever narrow structures
appear in the spectrum, the Markov approximation cannot usually be done.
Structured environments therefore often lead to non-Markovian dynamics, in
this sense we refer to them as non-Markovian environments.

2.2 Non-Markovian dynamics

As mentioned above, the Markovian dynamics is always an approximation of
the time evolution of an open system. The study of the exact dynamics of open
quantum system 1is, therefore, of fundamental importance. The Markovian



approximation, indeed, can hide crucially quantum effects such as the quantum
Zeno effect [40,41].

Moreover, while certain physical systems are characterized by very short
reservoir correlation times, and therefore are naturally consistent with a Marko-
vian description, other systems are intrinsically non-Markovian. Well-known
examples are photonic band gap materials or photonic crystals [33], where
highly non-Markovian phenomena such as population and entanglement trap-
ping occur [42]. It is worth noting that effects such as entanglement trapping
could be a resource in the battle against decoherence, since they counter the
loss of entanglement caused by the environment. For this reason very recently
reservoir engineering techniques have received a huge deal of attention [43].

Non-Markovian short-time dynamics seem to play a crucial role also in
the time evolution of certain quantum biological systems. Indeed in Ref. [44],
e.g., a new non-Markovian approach [10] was used to describe excitonic energy
transfer in large photosynthetic complexes.

Finally, recently, the internal inconsistency of the Markovian theory of
fault-tolerant quantum computation has been demonstrated [45]. Such claims,
together with results on non-Markovian quantum computation [46,47|, further
stress the importance of studies on non-Markovian dynamics also for quantum
technologies. Indeed, the need to have faster and faster quantum gates, in
order to reduce the effects of decoherence, requires the understanding of the
short-time dynamics, where non-Markovian effects are non-negligible.

2.2.1 Definitions of non-Markovianity

Due to the difficulties in dealing with non-Markovian systems, the theoretical
methods to study their dynamics strongly depend on both the given physical
system and the specific aspect of the dynamics under consideration. Even the
very definition of a non-Markovian process has very recently given rise to a
vivid debate in the scientific community [14-16,48].

Historically, Markovian time evolutions were associated to the Lindblad
form and, as a consequence, all master equations which could not be recast in
the Lindblad form were called non-Markovian. Following this line of thought
a measure of non-Markovian behaviour based on the deviation of the master
equation from the Lindblad form has recently been presented in the literature
[48].

Following this first attempt at least three measures of non-Markovianity
have been proposed in the last two years. In this Thesis I focus on the mea-
sure by Breuer et al. [14], which has the advantage of being independent of



the specific mathematical structure of the master equation. This measure is
based on the definition of non-Markovian systems as those for which there
exists at least one pair of states whose distinguishability increases for some
intervals of time. This increase indicates that the system experiences in toto
a feedback of information from the environment into the open system. The
measure proposed by Rivas et al. [15], on the contrary, seems to detect non-
Markovianity even when the feedback of information occurs in only one of the
decay channels, while the overall information flow goes from the system to the
environment. Finally in Ref. [16] the concept of quantum Fisher information
is used to quantify the degree of non-Markovianity.

The connection between different definitions is an important open question
lying at the heart of non-Markovian theory. In Chapter 3 I present one of the
result of the Thesis, dealing with the investigation of this connection.

2.2.2 Non-Markovian techniques

I now briefly review three main classes of approaches to the dynamics of open
quantum systems. Other methods exist in the literature, however I focus here
only on the non-Markovian techniques used in this Thesis.

1. Exact approaches: Some simple but fundamental models of open
quantum systems are amenable to an exact solution. A very relevant example
is a two-level atom interacting with a zero temperature bosonic structured
reservoir. For such a system it is possible to derive an infinite set of differential
equations, for the degrees of freedom of both the system and the environment,
which can be formally solved. From the dynamics of the total closed system
one then derives the non-Markovian atomic evolution. The exact solution also
allows to derive a posteriori a master equation for the reduced system. This
is important because the form of the master equation may be useful to single
out the main physical processes characterizing the dynamics.

One of the approaches discussed in this Thesis, namely the pseudomode
approach (9,49, 50|, falls into this category. This method allows to solve the
dynamics of a non-Markovian system by enlarging the Hilbert space of the
system in a way to include a “part” of the reservoir: the pseudomodes.

Consider for example the case of a two-level atom in a structured reser-
voir. Starting from the infinite set of differential equations for the total closed
system, a finite number of auxiliary variables, the pseudomodes, can be iso-
lated. This allows to map the original problem into a simpler one requiring
the solution of a finite set of differential equations for the atom and the pseu-
domodes. The number and the properties of the pseudomodes depend on the
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Figure 1: Diagramatic representation of the open system-pseudomode dynam-
ics: the system interacts with a single pseudomode which leaks with constant
decay rate I' into a Markovian reservoir.

form of the spectral distribution. By manipulating this new set of equations it
is possible to derive a master equation. Surprisingly such a master equation,
describing the time evolution of the enlarged system (atom and pseudomodes),
is Markovian.

From the form of the Markovian master equation one sees that the atom
interacts coherently with the pseudomodes, while the pseudomodes decay into
independent Markovian reservoirs (see Figure 1). From a fundamental point
of view this method establishes an equivalence between a non-Markovian sys-
tem (e.g., the atom) described by a non-Markovian master equation and the
Markovian extended system comprising a part of the reservoir. Therefore some
non-Markovian systems can be studied using Markovian master equations pro-
vided one pays the price of an enlargement of the dimension of the Hilbert
space.

2. Time-local master equations: A wide class of non-Markovian master
equations has a local-in-time form. This means that the time derivative of the
reduced density matrix at time ¢ depends only on the state of the system at
that time, and not on the previous history of the system.

The most general form for this class of master equations, also known as
time-convolutionless (TCL) master equations, is given in Refs. [2,13]. Here I
consider the subclass of TCL equations having the form

o) = +Z’Yk <Akﬂ )AT—*{ATAk’ ()}>‘ (2)



In Eq. (2) the specific time-dependence of the decay rates i (t) is related to the
form of the spectral density. If vx(¢) > 0 for any time and any decay channel
one speaks of time-dependent Markovian master equation, in the sense that
at each time instant the master equation is in the Lindblad form. In this
case one can use the MCWF approach, with the only difference that the jump
rates now depend on time. For certain reservoir structures, however, ~(t)
take temporarily negative values for certain time intervals. An example is the
photonic band gap case [33]. Since in the MCWF method the probability of
a quantum jump in the decay channel k is directly proportional to the decay
rate as P, = 5t7k(t)<\ll(t)|ALAk]\ll(t)>, a negative value for v (t) would lead to
a negative probability of occurrence of a quantum jump, having no physical
meaning.

The Non Markovian Quantum Jumps Technique (NMQJ) generalizes the
MCWF method to non-Markovian systems described by master equations in
the form of Eq. (2) for which negative decay rates can occur [10,51,52|. The
NMQJ approach coincides with the MCWEF method when the decay rates are
positive. When ~;(t) < 0 it has been shown that the negative probability of
occurrence of a quantum jump corresponds to a positive probability for the
occurrence of a “reverse” jump. A reverse jump basically cancels a quantum
jump which occurred at a previous time (in the region of positivity of the
coefficients).

Since quantum jumps cause decoherence/dissipation in the open system
dynamics, the reverse jumps partly cancel the previously occurred decoherence
and can be seen as the result of the reservoir finite memory. Another way of
seeing the action of the reverse jumps is by considering a jump-reverse jump
pair as describing a virtual process.

Interestingly, the exact non-Markovian master equation for a two-level
atom in a zero temperature structured environment has exactly a local-in-time

form J S )
t
W5 5 o ps] +9(0) | rpsor — sloopst]. @
where pg is the atomic density operator. The time dependent term S(t) de-
scibes the Lamb shift, while v(¢) is a time-dependent decay rate. The analytic
expression of S(t) and ~y(¢) are given in Ref. [2]. In the Markovian limit A — oo
(flat spectrum) Eq. (3) reduces to the Markovian master equation describing
spontaneous emission in free space.
3. Memory-kernel master equation. The third class of non-Markovian
approaches uses master equations having integro-differential form as the fol-

10



lowing

t
Sostt) = [ skt s)os(s) (1)
to
where KC(t, s) is the memory-kernel superoperator [11,12]. In Eq. (4) the time
derivative of the density operator, and therefore the future dynamics of the
state, depends on the past history of the system via the memory-integral.
Memory kernel master equations can be either derived microscopically or in-
troduced phenomenologically. One should note that, since a non-Markovian
generalization of the Lindblad theorem does not exist, phenomenological mas-
ter equations can lead to unphysical conditions indicated by the violation of
positivity and complete positivity [53,54]. The presence of the integral over
the past history of the system is normally associated to memory effects in the
dynamics and hence has been considered as synonymous of non-Markovianity.
We have seen however that there exists exact (and therefore non-Markovian)
master equations having local in time form.

Can the memory effects due to the memory kernel be always associated to
the feedback of information from the environment into the system? The an-
swer to this question, which will be addressed in Chapter 3, will shed light on
very general features of non-Markovian systems. There I will present our effec-
tive description of environmental memory and our results on the comparison
between two different definitions of non-Markovian dynamics.

11



3 Understanding non-Markovianity

In the previous Chapter we have presented the basic ingredients of the de-
scription of quantum systems interacting with their surroundings. In several
physical contexts such as quantum optics, solid state physics, and quantum
chemistry, the correlations between the system and the environment persist
for very long times and therefore non-Markovian approaches are needed. The
theory of non-Markovian open quantum systems however is, from many as-
pects, still in its infancy.

As we showed in the previous section, many analytical methods and nu-
merical techniques have been developed to treat non-Markovian dynamics. In
general the choice of a certain non-Markovian approach rather than another
is motivated by the properties of the physical system under consideration.
Comparisons between different approaches, however, are highly desirable but
still rare, due to the enormous difficulties in treating even the simplest non-
Markovian systems. In the following I will discuss an example in which, by
comparing two different non-Markovian approaches, one can gain new insight
in the physical mechanisms governing the physics of a paradigmatic model of
open quantum system.

3.1 Pseudomode as effective description of memory

Let us consider a two-state system interacting with a zero temperature bosonic
environment with Lorentzian structure. This system may model, for example,
an atom interacting almost resonantly with a mode of an optical cavity [31].
The pseudomode master equation for such a system is [9]

d r
@ _ —i[Hg, p] — = (aTap — 2apa’ + paTa) , (5)
dt 2
where
Hy=wporo_ + weala + Qo (aTJ, + aour) , (6)

p is the density operator for the atom and the pseudomode, and a (aT) is

the annihilation (creation) operator of the pseudomode. Since the Lorentzian
spectral distribution,

02 r

J(w)==2 : 7

R A L (Y "

has only one pole in the lower half complex plane, the atom interacts with one

pseudomode only. The constants w., I' and 2y are the oscillation frequency,

12



the decay rate, and the coupling constant of the pseudomode, respectively. As
Eq. (5) shows the qubit is coherently coupled to the pseudomode which is in
turn leaking into a Markovian reservoir.

In paper I we compare the pseudomode approach and the TCL description
of this system given by Eq. (3). We verify the equivalence between the two
approaches by taking the partial trace of the pseudomode in Eq. (5). In this
way we obtain a time-local master equation for the qubit, having the same
coefficients of Eq. (3). The proof of the equivalence of the approaches singles
out the existence of a relation connecting parameters and quantities belonging
to the two different descriptions. In particular, let us denote with |c1(#)|? the
atomic excited state probability, and with |b;(¢)|? the pseudomode population.
We recall that () is the time-dependent decay rate in Eq. (3), which can take
negative values for certain intervals of times, and I" is the pseudomode decay
rate of Eq. (5). The following relation holds

d|b (t)[*

—u T Llor(t)? = y(t)ler(t). (8)

The equation above and its interpretation are the main results of this section.
Equation (8) links the compensated rate of change of the pseudomode popula-
tion (i.e., the variation in time of the pseudomode population after removing
the effect of losses) with the decay rate of the qubit in the non-Markovian
reservoir.

According to the NMQJ method when ~(t) is negative some of the coher-
ence lost due to the action of the environment is restored by reversed quantum
jumps. Stated another way, due to the reservoir memory effects, a part of
the information that leaked from the system to the environment feeds back
into the system [10,51,52]. When ~(¢) < 0 the r.h.s. of Eq. (8) is negative.
Since the pseudomode losses T'|b (¢)|? always give a positive contribution, the
time derivative of the pseudomode population must be negative and dominant
compared to the losses. Therefore, the pseudomode population decreases not
only because the pseudomode leaks into the Markovian reservoir but also as a
consequence of the recovery of energy and coherence by the atom.

Equation (8) establishes a link between the restoration of coherence, caused
by the reverse jumps, and the pseudomode depletion. This observation suggests
an interpretation of the pseudomode as that part of the reservoir from which
the atom receives back information and probability due to memory effects. So,
the pseudomode behaves as a storage place for the reservoir memory. This
effective description of memory can be derived also for more complicated spec-
tral distribution, e.g., a toy-model photonic band gap, as described at the end
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of paper I. Concluding, the comparison between two different non-Markovian
approaches allows us to understand where the ‘“reservoir memory”, responsible
for the non-Markovian dynamics of the system, resides.

3.2 Memory kernel master equation without memory

While in the previous section we compared two different non-Markovian tech-
niques, in this section we make a comparison between two different “defini-
tions” of non-Markovianity. A wide part of the literature on non-Markovian
open quantum systems defines a non-Markovian system in terms of the specific
form of the master equation ruling its dynamics. More precisely many iden-
tify non-Markovianity with master equations containing an integral of mem-
ory. More recently definitions of non-Markovian dynamics based on intuitive
physical concepts, such as the flow-back of information from the environment
into the system, have been proposed [14-16,48|. Therefore it is important to
investigate the differences and analogies between these two ways of defining
non-Markovian dynamics. Do all memory kernel master equations describe a
flow-back of information as defined in Ref. [14]? In paper II we answer to this
question.

In Ref. [14] a Markovian quantum process is defined as one that continu-
ously reduces the distinguishability of quantum states. One can interpret this
loss of distinguishability as a flow of information from the open system to its
environment. By contrast, in a non-Markovian process there exists at least one
pair of states, in the Hilbert space of the system, the distinguishability of which
grows for certain times. This growth of distinguishability can be interpreted as
a reverse flow of information from the environment to the open system. This
backflow of information is considered the essential feature of non-Markovian
dynamics [14,17].

Following Ref. [14] we measure the distinguishability between two quantum
states, given by density matrices p; and pe, by means of the trace distance [19]
D(p1, p2) = 3Tr|p1 — po| where |A| = VATA. The trace distance represents a
metric on the space of physical states and it has the important property that all
completely positive and trace preserving maps are contractions for this metric.
Given a pair of initial states p; 2(0) the rate of change of the trace distance
under the time evolution is defined by

d
o(t,m,2(0)) = = D(pa (1), pa(1)). (9)
According to Eq. (9) a given process is said to be Markovian or time-dependent

14



Markovian if for all pairs of initial states the rate of change of the trace distance
is smaller than zero for all times, ie., o(t,p12(t)) < 0. Thus, a process is
defined as non-Markovian if there exists a pair of initial states p;2(0) and a
certain time ¢ at which the trace distance increases, o(t, p12(t)) > 0.

We consider again a fundamental model of open quantum systems, i.e., a
two-state system in a bosonic reservoir. The simplest memory-kernel master
equation for this system is

dps(t)
dt

= /t k(t")Lpg(t —t)dt'. (10)
0

Here, ps(t) represents the reduced density matrix of the qubit, k(t) is a mem-
ory kernel function containing information about the properties of the reser-
voir, and £ is the Markovian Liouvillian superoperator. A common choice for
the memory kernel function is k(t) = ve™"%, describing the case in which the
reservoir memory decays exponentially in time. In this case the reservoir cor-
relation time quantifying the non-Markovian scale is T = 1/7. For the system
considered the Liouvillian is given by

N
M@a,psmr —040_ps — PsT4+0—)

—l—%(%juosa_ —0_04ps — PSO_04), (11)

Lps =

with N average number of thermal excitations in the reservoir. The master
equation (10) and (11) was solved in Ref. [55] and the condition of positivity
and complete positivity of the dynamical map were also studied [56]. It turns
out that complete positivity is guaranteed only for moderate and high temper-
atures of the reservoir. Only in this case the master equation (10) is physical.
In paper II we use the exact solution to calculate the rate of change of the
trace distance, given by Eq. (9). We demonstrate that, within the limit of va-
lidity of the master equation, the trace distance of any couple of states always
decreases, i.e., o(t) < 0, Vt. Hence, the information that flows from the system
to the environment never comes back to the system during the dynamics. In
this sense the two definitions of non-Markovianity do not coincide.

Our analysis demonstrates that the common belief that certain forms of
master equations, in particular memory kernel equations, always capture as-
pects of non-Markovianity, such as the flow-back of information, is wrong. In
other words the presence of an integral over the past history of the system
does not necessarily guarantee by itself a reverse flow of information from the
environment into the open system.
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Recently the exact memory-kernel master equation for a qubit in a zero-
temperature reservoir has been derived from the exact solution of the dynamics
[57,58]. The structure of the Liouvillian £ in the exact memory kernel master
equation differs from the one appearing in the phenomenological one, given
by Eq. (10). In particular the exact superoperator £ contains an additional
dephasing channel. Interestingly this additional channel appears only in the
memory-kernel form and it is not present in the generator of the exact TCL
master equation.

The memory kernel master equation obtained from the exact solution is by
definition always positive and completely positive. Moreover, it does describe
non-Markovian feedback of information, for certain values of the parameters,
so in this case the memory kernel master equation is non-Markovian in the
sense of Ref. [14]. In general, however, the two definitions of non-Markovianity
do not coincide.
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4 Loss of quantum correlations in structured envi-
ronments

Entanglement is an exquisitely quantum type of correlation marking the de-
parture of quantum from classical physics. The state of a multipartite system
is said to be entangled if it cannot be written as the product of the states
associated to each single parts [59]. As a consequence, the global description
given by the total entangled state of the system contains information that the
single reduced states cannot contain.

Entanglement is at the heart of quantum information theory and represents
an essential ingredient in the success of a number of different protocols. For
example, in quantum cryptography entanglement guarantees fundamentally
secure communication [60]. In Shor’s quantum algorithm it is responsible of
the exponential speed up with respect to any classical algorithm [61]. In tele-
portation it enables the transmission of an unknown quantum state without
actually sending any particle through a channel [19].

The two paradigmes of quantum theory are entangled states and Schrodin-
ger’s cat states. With the latter term we indicate here quantum superpositions
of macroscopically distinguishable quantum states. Entanglement and quan-
tum superpositions are usually threatened by the presence of the environment.
In particular the environment Kkills the Schrédinger’s cat, transforming the
quantum superposition into a classical statistical mixture. While the death of
the Schrodinger’s cat always occurs exponentially in time, the loss of entan-
glement may present different features.

One of the key results in the study of entanglement dynamics in presence
of the environment is the phenomenon known as early-stage disentanglement,
or entanglement sudden death (ESD) [62]. Yu and Eberly showed that en-
tanglement shared by two uncoupled qubits interacting with two independent
Markovian reservoirs can die in a finite time. For such Markovian systems
this behaviour is in striking contrast with the exponential decay of quantum
coherences.

This fundamental difference is intriguing: if the coherences disappear asym-
ptotically, why entanglement may be completely lost after a finite time? Finite
time disentanglement could have important consequences also in quantum tech-
nologies, where one would like the survival time of entanglement to be longer
than the time needed for information processing.

Since the seminal work of Yu and Eberly entanglement dynamics has been
extensively investigated in a a number of models in different physical scenarios.
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Research has touched on issues ranging from quantum foundations [63,64],
to coherence control [65, 66|, error correction [67] and entanglement genera-
tion [68], to name a few. Besides, ESD has been examined in several dis-
tinctive model situations involving pairs of atomic, photonic and spin qubits
[69, 70], continuous Gaussian states [72-74|, multiple qubits [75] and spin
chains [76-78|. ESD is also studied for different environments including random
matrix environments |79, 80| and thermal noise [81-83|. The open dynamics
of entanglement has been investigated also in the case of initial correlations
between the system and the environment [84].

All these results rely on Markovian approaches. Due to its fundamental
nature it is important to understand whether ESD is a consequence of an ap-
proximation or rather characterizes also the exact dynamics. The first study
of non-Markovian entanglement dynamics dealt with two qubits in two inde-
pendent structured reservoirs (i.e., in which narrow structures appear in the
spectrum) specifically having Lorentzian spectral distribution [21]. This model,
in a cavity-QED scenario, describes two two-level atoms inside two indepen-
dent lossy cavities. As a result of the non-Markovianity of the environment
revivals of entanglement after sudden death can occur.

When, instead, the two atoms are placed inside the same cavity reservoir-
mediated-interaction between the atoms takes place. This interaction, absent
in the model of Ref. [21], amplifies the revivals of entanglement caused by the
reservoir memory. In this Chapter I review our results on this more complicated
model.

Our predictions apply to cavity QED experiments with trapped ions, and to
circuit QED experiments. In the first context [85, 86|, entanglement between
two remotely located trapped atomic ions has been demonstrated [87] and
multiparticle entangled states can be generated and fully characterized via
state tomography [88]. In the second context, field coupling and coherent
quantum state storage between two Josephson phase qubits have been achieved
through a microwave cavity on chip [89,90].

4.1 Entanglement and nonlocality

Let us consider a bipartite quantum system and indicate with H = H4®H g the
Hilbert space of the composite system, H 4 and Hp being the Hilbert spaces of
part A and part B. A pure quantum mechanical state |U45) € H is entangled
if it cannot be written in factorized form [¥4p) # |[V4) ® |[¥p) [18,19]. For
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pure bipartite states the von Neumann entropy of the reduced systems,
S(pi) = —Tr(pilogg pi),  i=A, B, (12)

unambiguously quantifies entanglement: E(|U)(¥|) = S(pa) = S(pp). The
estimation of entanglement becomes much more complicated when the state
under consideration is mixed. A mixed state is separable (not entangled) when
it can be written as a convex combination of product states [59],

p=> pipi®pf (13)

)

Since this decomposition is not unique, different measures of entanglement
with different operational meanings exist. In general the choice of the most
convenient measure depends on the properties of the state we want to study.
Even if different measures quantify differently the amount of entanglement
contained in the state, they all agree on the zero (separable state) and the
maximum (maximally entangled state) values.
Let us introduce the first measure of entanglement used in the Thesis,
namely the relative entropy of entanglement [18§]
Er(p) = min S(p[lo) = Trp(log, p — log, o), (14)
c€D(H)
where o is a separable state, and the minimization is performed over the set
of separable states D(#). Calculating the relative entropy of entanglement is
generally difficult because the form of the closest separable state is known only
for a few simple cases.
Another measure of entanglement is the entanglement of formation defined
as [18]
Ep(p) = min Y mE(|%;)(Ti]), (15)
(2

where the minimum is taken over all the possible decompositions of p =
> i W) (5] in terms of pure states. For two qubits a closed analytical for-
mula for Er(p) has been derived by Wootters [91]

Er(p) —H{§ [1+m}}, (16)

with H{z} = —zlogyx — (1 — z)logy(1 — x). The function C(p), called con-
currence, is defined in the following way:

C(,O) = maX{Oa \/E - \/)T_ \/Y_ \/)\74}7 (17)
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where {\;} are the eigenvalues of the matrix
R = plot @ oB)p (02 @ oF), (18)

with p* the complex conjugate of p and 0;4 /B the Pauli matrices for qubits A
and B. This quantity attains its maximum value 1 for maximally entangled
states and vanishes for separable states. Since Fr(p) is monotonically related
to the concurrence C, the latter quantity is often used to quantify entangle-
ment.

Quantum correlations described by entanglement are often related to the
nonlocal nature of quantum mechanics. In 1964 John Bell proved a theorem
considered a cornerstone of quantum theory. Bell’s theorem states that no local
hidden variable theory can reproduce all the predictions of quantum mechanics
[92]. Starting from the assumptions of realism and locality, Bell found an
inequality for correlations between measurements performed on two distant
systems.

Since the introduction of the first inequality, derived by Bell himself, other
inequalities going generically under the name of “Bell inequalities” have been
proposed. Probably the most popular among them is the Clauser-Horne-
Shimony-Holt (CHSH) inequality [93|. The importance of Bell inequalities is
that they allow to test experimentally the predictions of quantum mechanics.
Several experiments have been performed to detect violations of Bell inequal-
ities [94-96|. These experiments have always confirmed quantum theory, thus
shedding light on its nonlocal character.

It is worth mentioning that not all entangled states violate Bell inequalities,
entanglement and nonlocality coincide only for pure states. Nonlocality of
quantum states is even more sensitive to the presence of the environment than
entanglement. Interestingly, however, in non-Markovian systems the reservoir
memory may temporarily restore nonlocality after its disappearance [97|. In
this Chapter we also summarize results elucidating the nonlocality revivals in
a specific physical system.

4.2 The model: two qubits in a common structured reservoir

In this section we introduce the system studied in papers I1I-VII of this Thesis,
namely two qubits in a common zero-temperature Lorentzian structured reser-
voir. For the sake of concreteness we consider the specific case of two atoms
in a lossy cavity. The Hamiltonian of the system under investigation, in the
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rotating wave approximation, is given by H = Hy + H;,:, where

Ho = wo( ﬁaé+afaé)+2wkazak, (19)
k
Hipy = (Uf + Jf) ngak + h.c. (20)
k

Here, aﬁ and of are, respectively, the Pauli raising and lowering opera-
tors for the atoms A and B, wg is the Bohr frequency of the two atoms,
ay (CLL) is the annihilation (creation) operator for the field mode k, and the
mode k is characterized by the frequency wj; and the coupling constant g.
Under these conditions the dynamics of the two atoms can be effectively
described by a four state system in which three states are coupled to the
vacuum in a ladder configuration with equally spaced energetic levels, and
one state is completely decoupled from the other states and from the field.
This can be easily understood by writing the Hamiltonian in the new basis

{10) = [00), [+) = ([10) +101))/v2,|=) = (|10) - [01))/V2, |2) = [11)}:

Ho = 2u0/2)(2] + wo(|H) (+] + =) (=) + 3" wealar, (21)
k
Hine = 3 V2gka(14)(0] + 12)(+]) + hec. (22)
k

The states |[4+) and |—) are known as the superradiant and subradiant states,
respectively. The total Hamiltonian consists of two parts, a first part describing
the free dynamics of the |—) state, and the remaining terms describing a three-
state ladder system {|0), |[+), |2)} with the transitions |0) <> |[4+) and |+) <> |2).

In paper III we solved this system exactly (without performing any Markov
or weak coupling approximation) by means of the pseudomode approach for
a Lorentzian spectral density as in Eq. (7). Notice that writing the total
Hamiltonian in the new basis is essential for solving the dynamics exactly.
Indeed it allows us to use the pseudomode method for multiple excitations [49].
The master equation describing the extended system, comprising of the two
atoms and the pseudomode, is

% = —i[V, p] — g(aTap + pa'a — 2apal), (23)
with
V = V200 (al+)(0] + a'|0)(+| + al2)(+] + al|+)(2)), (24)
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where p is the density matrix of the extended system in the interaction picture
and V is the effective coupling between the atoms and the pseudomode. We
recall that the parameters I' and Qg in Eq. (24) represent the pseudomode
decay rate and the coupling constant between the pseudomode and the ladder
system, respectively. We solve the master equation in Eqs. (23) and(24) using
the Laplace transform method as shown in paper III.

4.3 Non-Markovian dynamics of entanglement

In papers IIT and IV we study the dynamics of entanglement for a wide class
of states having the following X form?

_ 0 t)  =(t)
ORI (25)
w*(t) 0 0 dt)
For this type of states concurrence attains a simple expression,
C(t) = max{0,C1(t), Ca(t)}, (26)

where

Ci(t) =2lw(t)| —24/b(t)c(t), (27)
Oa(t) = 2|2(t)] — 24/at)d(D). (28)

Note that the Hamiltonian model considered, given by Egs. (19) and (20),
preserves the X form during the time evolution.

We start our analysis considering a particularly relevant class of states,
called Bell-like states, defined as

W) = a00) + e (1 — a?)M/2[11), (29)

|®) = al01) 4 € (1 — a?)'/?]10). (30)

This class includes also the celebrated maximally entangled Bell states [¥1) =
(]00) % [11))/v/2 and |®+) = (|01) £ [10))/v/2. The dynamics of entanglement
for Bell-like states with one excitation was studied in Ref. [22]. There it was
shown that entanglement exhibits collapses and revivals and that non-zero
asymptotic entanglement can be present.

2The density matrix is written in the computational basis {|00), |10}, |01), [11)}.
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The persistence of entanglement despite the presence of the environment is
due to the existence of the subradiant state |—) which is maximally entangled
and completely decoupled from the dynamics. Therefore if the state of the
two atoms has initially a non zero |—) component some entanglement will be
trapped in the system.

The exact solution of the model shows that, as in the Markovian case, when
only one excitation is present ESD never occurs [22], as one can see from the
mathematical structure of concurrence. Hence, to investigate the presence of
ESD in this exact model it is necessary to extend the analytical approach to
the more complicated case in which two excitations are present in the system.

In paper III of this Thesis we presented our results on dynamics of entangle-
ment for two atoms initially prepared in Bell-like states with two excitations, as
given by Eq. (29), placed inside an empty cavity. We are mainly interested in
the dynamics in the strong coupling regime, i.e., for I'/Qy < 4. The dynamics
of entanglement for this class of states shows that ESD occurs also in the exact
model, and therefore it is not a consequence of the Markovian approximation.

Figure 2 (a) shows the behavior of entanglement measured by concurrence
as a function of the parameter a? and of the scaled time ot (with 7 =
402/T). Looking at this figure one sees immediately that the non-monotic
decay of entanglement, typical of non-Markovian systems [74], occurs also in
the two excitations case. From the plot we can clearly identify two different
dynamical regions. For o > 1/4 concurrence oscillates but, contrarily to the
one excitation case, never reaches zero. For a? < 1/4, a series of sudden deaths
and revivals of entanglement appear in the evolution. It is worth stressing that,
as our results illustrate, when revivals of entanglement after ESD occur, a finite
time ¢ after which the entanglement is completely lost does not exist. This is
true for both the Markovian case studied in Ref. [98] and our non-Markovian
case. The reason for such a behavior is that correlations between the two atoms
are continuously created by the common reservoir.

To have a better understanding of the entanglement evolution, we compare
our results with i) the Markovian common reservoir case [Fig. 2 (b)| and ii) the
non-Markovian independent reservoirs case [Fig. 2 (¢)]. On the one hand the
comparison with the dynamics in a common Markovian reservoir shows that
the non-Markovianity of our model leads to an increase in both the number and
the intensity of revivals of entanglement. On the other hand the comparison
with the non-Markovian independent reservoirs case shows that, in our model,
the reservoir-mediated interaction counters the sudden death of entanglement.

The comparison with those two different models helps in grasping the na-
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NON-MARKOVIAN COMMON RESERVOIR

(a) I

MARKOVIAN COMMON NON-MARKOVIAN
RESERVOIR INDEPENDENT RESERVOIRS

Figure 2: (a) Concurrence as a function of scaled time 4ot and o? for two
atoms prepared in the state (29) and interacting with a common Lorentzian
structured reservoir. For comparison we show also the equivalent Markovian
case (b) and the non-Markovian independent reservoirs situation (c) for the
same class of initial states.

24



Figure 3: Concurrence as a function of scaled time and r for two atoms prepared
in the Werner-like state in Eq. (31) with |M) equal to the superradiant state.

ture of our results. The dynamical scenario emerging from our study of entan-
glement reveals that there are two main ingredients ruling the dynamics: the
backaction of the non-Markovian reservoir and the reservoir mediated interac-
tion.

In paper IV we looked at the interplay between entanglement and mixed-
ness in our model. To this aim we compare the evolution of concurrence and
von Neumann entropy finding that the intuitive picture of a simultaneous de-
terioration of entanglement and purity does not always hold. We focus on the
dynamics of a class of mixed states known as Werner-like states. These states

have the form
1—r

4
with |M) one of the four maximally entangled Bell states. Werner-like states
are used in many applications in quantum information processing such as tele-
portation [99] and entanglement teleportation [100].

In Figure 3 we show the time evolution of entanglement for two atoms
prepared in a Werner-like state (with |M) equal to the superradiant state)

awz = rlM) (M| + —L, (31)
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as a function of the purity parameter r. We see that the introduction of
even a small amount of mixedness modifies qualitatively the evolution of the
entanglement. Indeed regions of sudden death and revivals appear. These
regions are wider and wider for decreasing value of r, i.e., for more and more
mixed initial states.

For » < 1/3 the initial entanglement becomes zero. In this region the
system presents a new interesting dynamical effect: the sudden birth of entan-
glement (ESB). This phenomenon is due to the interaction mediated by the
common reservoir, indeed it is present also in the Markovian common reservoir
case [101].

In paper VI we have generalized our dynamical model to include the effect
of spontaneous emission in free space. From a mathematical point of view
this corresponds to adding two Markovian dissipators describing spontaneous
emission to Eq. (5). In this more realistic model we show that the dynamics of
entanglement has three different dynamical regimes, depending on the relative
weight of the Markovian and non-Markovian decay rates. In paper VII this
more general model is used to study the dynamics of the maximum of the Bell
function, measuring nonlocality.

Concluding, in this section we have seen how a powerful exact approach,
namely the peudomode approach, has brought to light a variety of new phe-
nomena characterizing the dynamics of entanglement in a structured reservoir.

4.4 Interplay among entanglement, mixedness and nonlocality

In this section I will describe a compact way of looking at the environment
induced dynamics of three important properties of an open quantum sys-
tem: entanglement (measured by concurrence C'), nonlocality (measured by
the maximum of the Bell function B) and mixedness (measured by the purity
P). More specifically I introduce a new dynamical tool, the C PB parameter
space, to study the relationship among these three quantities. As in the previ-
ous part of the Thesis I focus on non-Markovian dynamics and investigate the
consequences of the reservoir memory comparing the time evolution with the
Markovian one.

In paper IV we showed that the dynamical interplay between the entangle-
ment and mixedness strongly depends on the initial state. This is even more
strongly emphasized in paper V, where the two quantities above are linked to
nonlocality by means of the C'PB space. The physical system considered is the
same as in the previous section. Not surprisingly, therefore, reservoir-mediated
interaction and memory effects induce, with different intensities, revivals of all
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Figure 4: CPB space curve drawn by the system starting from the initial
two-excitation Bell state |¥) for strong non-Markovian conditions. The arrows
indicate the time evolution and the numbering from 1-to-7 indicates the differ-
ent branches (multi-branch behavior) raising from the dynamics. A one-to-one
correspondence among the three quantities is not possible here.

three quantities.

The values of the three quantities C, P, and B, are generally related and
connections among pairs of them have been widely investigated. These con-
nections are far from being trivial. As we have mentioned, although for pure
states the presence of entanglement implies nonlocality [102], for mixed states
a given amount of entanglement does not necessarily guarantee violation of a
Bell inequality [59,103,104]. However, we have proven that if the two atoms are
initially prepared in the superradiant state, differently from the two-excitation
case, a one-to-one correspondence between any two of C, P, and B occurs.
More in general when the initial state is a MEMS state, i.e., a state possessing
the maximal amount of entanglement for a given degree of mixedness [105,106],
a closed analytical relation among C, P, and B can be written. For example,
for 2/3 < C <1, one gets

P+C?-B*4=(1-0C)% (32)

We now consider an example of a CPB phase curve for two atoms prepared in
a Bell state |¥) with two excitations. The state of the system is initially pure
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(P = 1), maximally entangled (C' = 1) and maximally nonlocal (B = 2v/2).
C, P and B deteriorate with time until the representative point has a value of
B which satisfies the Bell inequality (branch 1 of Fig. 4). Now, a completely
new dynamical feature appears: the curve surfaces from the B = 2 plane in a
region of small concurrence and high purity (branch 2). This behavior follows
from the fact that when the system is almost pure even a small amount of
entanglement induces the appearance of nonlocality. After such a revival of
purity and nonlocality, the curve sinks again and reappears on the space region
with smaller purity (branch 3). However, the system does not pass through
the same C'PB points of the first branch, but it traces a new branch close
to the first one (branch 3). Successively, once again decoherence effects due
to the environment lead to deterioration of C, P and B, and a new branch
appears (branch 4). The high non-Markovianity of the reservoir again causes
Bell violation on the high purity/small concurrence region of space (branch 5).
The behavior continues in a similar way and the point draws new branches
until a time after which no further violation occurs.

This example demonstrates the interest in the description of non-Markovian
dynamics, showing how the structure of the environment can be responsible
for the occurrence of new dynamical features. The study of the dynamics of
quantum correlations in open quantum systems presents a very rich variety of
phenomena, many aspects of which are not yet fully understood. With our
work we add another wedge in the mosaic: we solve exactly the dynamics of
two qubits in a common non-Markovian reservoir and present the analysis of
entanglement and nonlocality, connecting them to purity.
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5 Quantum discord in Markovian and non-Markovian
systems

In the previous Chapter I have discussed how correlations such as entanglement
behave under the action of non-Markovian decoherence. In this Chapter I focus
on another type of quantum correlations, the quantum discord. Quantum
discord is a young quantity, it has been introduced ten years ago to quantify
the total quantum correlations in a quantum system [25,26].

Very recently the open system dynamics of quantum discord started to be
investigated, after the discovery of analytic closed formulas for certain classes
of states [107|. In this Chapter I review the state of the art on quantum dis-
cord, giving particular relevance to a dynamical effect that we have discovered
for depolarizing channels and presented in papers VIII and IX: the sudden
transition between classical and quantum decoherence.

5.1 Definition of quantum discord

The definition of quantum discord stems from the difference between the quan-
tum generalizations of two classically equivalent concepts. In particular in
classical information theory there are two equivalent expressions for the mu-
tual information of a bipartite system. However, when pursuing the quantum
analogue, these two formulations differ, and one can use the mismatch between
the two to assess quantum correlations.

The two expressions mentioned above are [(AB) = H(A)+ H(B)—H(AB)
and J(AB) = H(A) — H(A|B), where A and B are two classical random vari-
ables, H(A) and H(B) are Shannon entropies, and H(A|B) is the conditional
entropy on A when B is found out.

The first quantum generalization of mutual information is the so called
quantum mutual information:

I(pag) = S(pa) + S(pB) — S(pan), (33)

where pap is the density matrix of the total system, p4(p) is the reduced den-
sity matrix of subsystem A(B), and S(p) = —Tr{plog, p} is the von Neumann
entropy. This is generally accepted as the measure for the total amount of
correlations (quantum and classical) of a quantum system [108,109].

The second extension of mutual information requires the generalization
of the concept of conditional entropy. Indeed, performing measurements on
system B affects our knowledge of system A. In particular, how much system
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A is modified depends on the choice of the measurement performed on B.
Here the measurement Bj is considered to be of von Neumann type and it
is described by a complete set of orthonormal projectors I corresponding to
outcome k. So the conditional density operator, which is the quantum state
of the total system conditioned on the measurement outcome labeled by k,
becomes pr = (I ® By)pap(I ® By)/pr where py, = Tr{(I ® By )pap(I ® By)},
and [ is the identity operator for subsystem A. Defining the quantum analog
of conditional entropy as S(pap|{Br}) = >, PxS(pr) we can introduce the
second quantum extension of mutual information:

J(paB|By) = S(pa) — S(pap|Bk)- (34)

In Ref. |26] Henderson and Vedral have shown that the maximum of this quan-
tity over all the possible sets of measurements can be interpreted as a measure
of classical correlations of the state,

C(pap) = max[J(pap|Bk)]. (35)
{11}
Therefore, the difference between the quantum mutual information I(pap),
describing total correlations, and the measurement-based definition of quan-
tum mutual information C(pap), measuring classical correlations, defines the
quantum discord

D(pap) = I(pap) — C(pas) (36)

5.2 State of the art on quantum discord

Quantum discord is an indicator of how strongly “quantum correlated” is a
quantum system. The definition of classicality deriving from the entanglement
vs separability paradigm, would put separable states in the cauldron of classi-
cally correlated states [59]. If it is true that separable states can be prepared
via local operations and classical communication, however, it is not guaran-
teed that they can be represented by classical means, that is via bivariative
probability distributions.

Very recently quantum discord has attracted a lot of attention. This quan-
tity has been studied from a mathematical point of view, focusing in particular
on its connection to entanglement, its possible operational meaning [110,111],
how it can be witnessed [112,113], and the state-space geometry of non-zero,
zero [114], and constant discord states [115]. Analytical formula for the dis-
cord, initially known only for two qubits [107,116|, have been recently obtained
also for continuous variable systems [117,118|. The role of discord has been
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investigated in many protocols, e.g., in DQC1 (deterministic quantum compu-
tation with one quantum bit) [27] or in the Grover search algorithm [119]. The
role of discord in the biological world (light-harvesting process) has been also
considered [121]. Discord has been found to be important in quantum phase
transitions [120] and even relativistic effects have been investigated [122].

One of the most active fields of research on discord is certainly its dynamics
under decoherence. The time evolution of the discord has been studied both
in the Markovian [123,124] and in the non-Markovian scenarios for systems of
qubits [125], and recently also for bimodal Gaussian states [126]. Already at a
first glance the dynamical behaviour of the discord appears to be quite different
compared to the one of entanglement. For example, discord never disappears
completely after a finite time, in contrast to the ESD phenomenon discussed in
the previous Chapter. Moreover, discord can exhibit sudden changes as a func-
tion of characteristic parameters of the system, e.g., time. More precisely the
derivative of discord with respect to the given parameter may change abruptly.

Perhaps the most striking difference with the dynamics of entanglement
is the fact that, under certain circumstances, discord remains constant for
long times even in presence of the environment. To be more specific, in this
initial time interval, while the initial quantum correlations are preserved, only
classical correlations are lost. For Markovian systems there exists a unique
time instant ¢ after which the system stops losing classical correlations and
starts releasing quantum correlations. For this reason we have called this
phenomenon sudden transition between classical and quantum decoherence.
We have demonstrated this effect for two qubits subjected to depolarizing
channels both in the Markovian and in the non-Markovian scenario.

This is the first evidence of a quantum property which is completely un-
affected by the presence of the environment. The sudden transition between
classical and quantum decoherence has been already detected experimentally
with an all-optical setup [127].

As we mentioned before there are indications that quantum discord could
be a resource for quantum technologies [27]. If this turns out to be the case one
could exploit the constancy of the discord to perform quantum computation
or communication tasks without any disturbance from the noisy environment.

5.3 Sudden transition between classical and quantum decoher-
ence

In this section I introduce the physical system studied. Let us consider two
qubits under local depolarizing channels. For this type of channels the Marko-
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vian dissipator is in the form Llp,p)] = v[af(B)pA(B)a;‘(B) — pa(B)l/2, with

~ the phase damping rate, 0;»4(3) the Pauli operator in direction j acting on
A(B), and j = 1,2,3 for the bit, bit-phase, and phase flip cases, respectively.
For the sake of simplicity here I focus on the phase flip channel. Let us assume
that the qubits are prepared in a state of the form

3
1
pPAB = <1AB + E Cz‘UiAUiB> : (37)
=1

where ¢; is a real number, such that 0 < |¢;| < 1 for every i, and 145 is
the identity operator of the total system. For a depolarizing channel the form
of the state is maintained during the evolution. The coefficients evolve as
c1(t) = c1(0) exp(—29t), c2(t) = c2(0) exp(—27t), and c3(t) = c3(0) = cs.
A state in the form (37) can be conveniently rewritten in the form of a Bell
diagonal state

pap(t) = AgOTTNTT]+AG(1)]@T)(27]
+ Ag(B]@T)(@T[ + Ay ()[U){(¥T, (38)

where [UF) = (]00) & |11))/V?2, [®*) = (|01) + |10))/v/2 are the four Bell

states, and

M) = [LEer(t) F ealt) + es(t)]/4, (39)
M) = [LEer(t) £ ealt) - es(b)]/4 (40)

For this type of states the evolution of quantum discord and classical correla-
tions is known analytically [107] and equal to

2 _1\k
Cloan) = 3 W 11 4 (1), ()
k=1
Dipas) = 2+ 3 Mu(t) oz (1) — Clpan). (42
ol

where x(t) = max{|c1(t)], |c2(t)],|c3(t)|}, & = ¥,®, and | = +. Note that
C(paB) + D(pap) = I(paB), where I(pap) is the total mutual information.
The dynamics of classical and quantum correlations for the same classes of
states of Eq. (37) was already studied in Ref. [124]. There three different dy-
namical regimes were found: i) a regime in which discord decays exponentially
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Figure 5: Dynamics of mutual information (green dotted line), classical corre-
lations (red dashed line) and quantum discord (blue solid line) as a function
of vt for ¢1(0) =1, ¢2(0) = —c3 and ¢3 = 0.6.

and classical correlations are constant; ii) a regime in which both quantum cor-
relations and classical correlations decay exponentially; and iii) another regime
in which the quantum discord exhibits a sudden change in the dynamics, i.e.,
there exists an instant of time ¢ in which the time derivative changes abruptly.
In the latter regime the discord decays exponentially before and after ¢, but
the decay rate changes. At the same time instant ¢ the classical correlations
dynamics, passes from an exponential decaying behaviour (for ¢ < ) to a con-
stant value (for ¢ > t). In paper VIII we have found that in the last regime and
for certain classes of states, before ¢ the discord does not decay at all. This
can be seen mathematically in a simple way. Let us consider the class of states
with ¢1(2)(0) = &, cp1)(0) = —c3k and c3(0) = c3, with k real and |k| > |cs].
The total quantum mutual information can be written as

H(gl)ng logy[1 + (—1)j03] (43)

M

Ilpap(t)] =

<
I
—

1+ (1) ei(2)

5 logo[1 + k(=1)7 exp (—y1)].

]

+
1

<.
Il

Comparing Egs. (35) and (42) with Eq. (43) it is easy to see that, for t < ¢ =
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Figure 6: Dynamics of entanglement (violet dashed-dotted line) and quantum
discord (blue solid line) as a function of ¢ for ¢1(0) = 1, ¢2(0) = —c3 and
C3 — 0.3.

—logy(cs/k) /7, the first constant term and the second decaying term coincide
with the discord and the classical correlations, respectively. On the contrary,
for t > t, the two types of correlations swap their role, discord starts to decay
(second term) and classical correlations become constant (first term). This
result is clearly showed in Figure 5. To elaborate, the system experiences two
different dynamical regimes: at the beginning the state of the qubits evolves
in a way to lose only classical correlations while quantum correlations are not
touched in any way by decoherence. This is what we call the classical deco-
herence regime. In the second phase, after a sudden change in quantum and
classical correlations, quantum correlations are lost while classical correlations
are preserved. This is the quantum decoherence phase.

One legitimate question is: what about entanglement? Is the sudden
change point related to the occurrence of ESD? We have proven that the en-
tanglement does undergo sudden death at some point but the two phenomena
are not connected. Indeed, depending on the state, the sudden death of en-
tanglement can take place either before or after the sudden change time. An
example of dynamics of both discord and entanglement, as measured by the
relative entropy of entanglement, is given in Figure 6.

Inspired by the discovery of this dynamical effect, Lang and Caves studied
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the surfaces of constant discord in the space of parameters of Bell-diagonal
states [115]. This study shows that the set of Bell-diagonal states for two
qubits can be depicted as a tetrahedron in three dimensions. Level surfaces of
entanglement and nonclassical measures can be plotted directly on this three-
dimensional geometry. This provides a complete picture of the structure of
entanglement and discord for the simple case of Bell-diagonal states. It is
interesting to understand how the dynamical effect we have just described is
represented on this three-dimensional space.

As we can see from Figure 7, the surface of constant discord are “tube-
shaped” therefore discord is neither concave nor convex. The red straight line
is a decohering-state trajectory, and it depicts in such constant surface space
a constant discord evolution. The line runs along a tube of constant discord,
until it encounters an intersecting tube, after which the discord decreases to
zero when the state becomes fully classical.

5.4 Explaining the constant discord

In paper IX we continued our investigation on the physical reasons behind the
sudden transition and check if this phenomenon is only typical of the Markovian
case. An approach which turns out to be useful in the interpretation of our
result is proposed in Ref. [128]. There, Modi and collaborators presented a
new definition of discord. In analogy to the relative entropy of entanglement,
quantum discord is also defined in terms of the relative entropy, where this
quantity measures the distance of our state to its closest classical state. In
general the new definition of the discord does not equal to the original one.
However, the two definitions do coincide in the case of Bell-diagonal states.
We can therefore interpret the constant discord evolution in the light of the
definition of discord of Ref. [128].

In this framework constant discord means that, in the state space of the
qubits, the state of the system has always the same “distance” from its closest
classical state. When the discord decays instead the distance to the closest
classical state decreases. Interestingly the geometry of the closest classical
states shows that, at the transition time, the state under consideration has
two closest classical states. This is represented in a pictorial way in Figure
8. There the solid black line represents the trajectory of the state p(t) in
a schematized state space, and the dotted red line represents the trajectory
drawn by the closest classical state XgJD (t) (where CD stands for constant
discord). This trajectory is parallel to the one traced by p(t) meaning that
the discord between the two lines is constant. The green square on the p(t)
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Figure 7: Constant discord surfaces and trajectory under local dephasing
channels for a state as in Eq. (37) with initial conditions ¢;(0) = 1 and
c2(0) = ¢3(0) = 0.3. This figure is taken from Ref. [115] with the kind permis-
sion of the authors.
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Figure 8: Schematization of the trajectories of both the state of the system
and its closest classical state in the state space.
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trajectory marks the state pgp at which the sudden transition takes place. As
mentioned above, the state pgr has two different closest classical states having
equal distance. One is the state at the end of the red dotted line, i.e., XgD (1),
the other one Xf;)D (t) is indicated by the red sphere at the right end of the
black line. After the transition p(t) keeps traveling the black line from left to
right reaching asymptotically the closest classical state.

In paper IX we generalized our study to the non-Markovian scenario.
Specifically, we extended the exact model of one qubit under local colored
noise depolarizing channel by Daffer et al. [129] to the two-qubit case. The
phenomenon we have discovered in the Markovian case characterizes also the
exact dynamics of the correlations. Specifically, for initial Bell-diagonal states,
one can distinguish three different dynamical regimes: (i) constant classical
correlations; (ii) damped oscillations of quantum and classical correlations (iii)
sudden change behavior with possibility of frozen discord, where the memory
effects of the non-Markovian environment bring into play non-trivial dynam-
ical features and allow multiple sudden transitions between the classical and
quantum decoherence phases.

To conclude, we demonstrated the existence of a new dynamical effect:
the sudden transition between classical and quantum decoherence. This phe-
nomenon is not the result of the Markov approximation but exists also in the
exact non-Markovian case. To our knowledge, the constant quantum discord
is the first dynamical example of a quantum property which does not decay
under decoherence.
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6 Conclusions

In this Thesis I have presented my results on different aspects of the dynamics
of non-Markovian systems. I have discussed some fundamental problems of
the theory of non-Markovian open quantum systems, such as the connection
between distinct non-Markovian techniques and the disagreement of different
definitions of non-Markovianity. With our study we have gained insight on the
role of memory and of the flow-back of information from the environment to
the system in different approaches to non-Markovian dynamics.

The dynamics of quantum correlations in non-Markovian systems has been
also at the centre of my research. We have solved exactly a fundamental non-
Markovian system describing, i.e., two two-level atoms in the same cavity, and
investigated the effects that the structured environment has on the dynamics
of entanglement. We have also studied the relations between entanglement,
purity and nonlocality and generalized the previous model to take into account
the effects of spontaneous emission by the atoms.

Studying the dynamics of correlations in a well-known model such as two-
qubits in phase flip channels, we have discovered a new dynamical effect en-
tailing the complete preservation of quantum correlations for long intervals of
time. This phenomenon is not the result of the Markov approximation but
appears also in the non-Markovian scenario.
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