14 research outputs found

    Frontal brain asymmetries as effective parameters to assess the quality of audiovisual stimuli perception in adult and young cochlear implant users

    Get PDF
    How is music perceived by cochlear implant (CI) users? This question arises as "the next step" given the impressive performance obtained by these patients in language perception. Furthermore, how can music perception be evaluated beyond self-report rating, in order to obtain measurable data? To address this question, estimation of the frontal electroencephalographic (EEG) alpha activity imbalance, acquired through a 19-channel EEG cap, appears to be a suitable instrument to measure the approach/withdrawal (AW index) reaction to external stimuli. Specifically, a greater value of AW indicates an increased propensity to stimulus approach, and vice versa a lower one a tendency to withdraw from the stimulus. Additionally, due to prelingually and postlingually deafened pathology acquisition, children and adults, respectively, would probably differ in music perception. The aim of the present study was to investigate children and adult CI users, in unilateral (UCI) and bilateral (BCI) implantation conditions, during three experimental situations of music exposure (normal, distorted and mute). Additionally, a study of functional connectivity patterns within cerebral networks was performed to investigate functioning patterns in different experimental populations. As a general result, congruency among patterns between BCI patients and control (CTRL) subjects was seen, characterised by lowest values for the distorted condition (vs. normal and mute conditions) in the AW index and in the connectivity analysis. Additionally, the normal and distorted conditions were significantly different in CI and CTRL adults, and in CTRL children, but not in CI children. These results suggest a higher capacity of discrimination and approach motivation towards normal music in CTRL and BCI subjects, but not for UCI patients. Therefore, for perception of music CTRL and BCI participants appear more similar than UCI subjects, as estimated by measurable and not self-reported parameters

    Implant technology and TFS processing in relation to speech discrimination and music perception and appreciation

    Get PDF
    Direct stimulation of the auditory nerve via a Cochlear Implant (CI) enables profoundly deaf subjects to perceive sounds. Many CI users find language comprehension satisfactory in quiet and accessible in the presence of noise. However, music contains different dimensions which need to be approached in different ways. Whilst both language and music take advantage of the modulation of acoustic parameters to convey information, music is an acoustically more complex stimulus than language, demanding more complex resolution mechanisms. One of the most important aspects that contributes to speech perception skills, especially when listening in a fluctuating background, is Temporal Fine Structure processing. TFS cues are pre-dominant in conveying Low Frequency (LF) signals. Harmonic (HI) and Disharmonic (DI) In-tonation are tests of pitch perception in the LF domain which are thought to depend on avail-ability of TFS cues and which are included in the protocol on this group of adult CI recipients. One of the primary aims of this thesis was the production of a new assessment tool, the Italian STARR test which was based on the measurement of speech perception using a roving-level adaptive method where the presentation level of both speech and noise signals varied between each sentence presentation. The STARR test attempts to reflect a better representation of real world listening conditions where background noise is usually present and speech intensity var-ies according to vocal capacity as well as the distance of the speaker. The outcomes for the Italian STARR in NH adults were studied to produce normative data, as well as to evaluate inter-list variability and learning effects. (Chapter 4). The second aim was to investigate LF pitch perception outcomes linked to availability of TFS cues in a group of adult CI recipients including bimodal users in relation to speech perception, in particular Italian STARR outcomes. Here it was seen that age had a significant effect on performance especially in older adults. Similarly, CI recipients (even better performers) showed abnormal findings in comparison to NH subjects. On the other hand, the significant effect of CI thresholds re-emphasized the sensitivity of the test to low intensity speech which a CI user can often encounter under everyday listening conditions. Statistically significant correlations between HI/DI and STARR performance were found. Moreover, bimodal benefit was seen both for HI/DI and STARR tests. Overall findings confirmed the usefulness of evaluating both LF pitch and speech perception in noise in order to track changes in TFS sen-sitivity for CI recipients over time and across different listening conditions which might be provided by future technological progress. (Chapter 5) Finally, the last and main aspect taken into account in this thesis was the study of the difficul-ties experienced by CI users when listening to music. An attempt was made to correlate find-ings resulting from the previous phases of this study both to Speech in Noise and to the com-plex subjective aspects of Music Perception and Appreciation: correlation analysis between HI/DI tests and the main dimensions of Speech in Noise (STARR and OLSA) and Music Ap-preciation was performed. (Chapter 6). Interestingly, positive findings were found for the two most complex types of Music (Classical, Jazz), whereas Soul did not seem to require particular competence in Pitch perception for the appreciation of the subjective variables taken into con-sideration by this study

    Different Perception of Musical Stimuli in Patients with Monolateral and Bilateral Cochlear Implants

    Get PDF
    The aim of the present study is to measure the perceived pleasantness during the observation of a musical video clip in a group of cochlear implanted adult patients when compared to a group of normal hearing subjects. This comparison was performed by using the imbalance of the EEG power spectra in alpha band over frontal areas as a metric for the perceived pleasantness. Subjects were asked to watch a musical video clip in three different experimental conditions: with the original audio included (Norm), with a distorted version of the audio (Dist), and without the audio (Mute). The frontal EEG imbalance between the estimated power spectra for the left and right prefrontal areas has been calculated to investigate the differences among the two populations. Results suggested that the perceived pleasantness of the musical video clip in the normal hearing population and in the bilateral cochlear implanted populations has similar range of variation across the different stimulations (Norm, Dist, and Mute), when compared to the range of variation of video clip’s pleasantness for the monolateral cochlear implanted population. A similarity exists in the trends of the perceived pleasantness across the different experimental conditions in the mono- and bilaterally cochlear implanted patients

    Temporal fine structure processing, pitch and speech perception in cochlear implant recipients

    Get PDF
    Cochlear implant (CI) recipients usually complain about poor speech understanding in the presence of noise. Indeed, they generally show ceiling effects for understanding sentences presented in quiet, but their scores decrease drastically when testing in the presence of competing noise. One important aspect that contributes to speech perception skills, especially when listening in a fluctuating background, has been described as Temporal Fine Structure (TFS) processing. TFS cues are more dominant in conveying Low Frequency (LF) signals linked in particular to Fundamental Frequency (F0), which is crucial for linguistic and musical perception. A§E Harmonic Intonation (HI) and Disharmonic Intonation (DI) are tests of pitch perception in the LF domain and their outcomes are believed to depend on the availability of TFS cues. Previous findings indicated that the DI test provided more differential LF pitch perception outcomes in that it reflected phase locking and TFS processing capacities of the ear, whereas the HI test provided information on its place coding capacity as well. Previous HI/DI studies were mainly done in adult population showing abnormal pitch perception outcomes in CI recipients and there was no or limited data in paediatric population as well as HI/DI outcomes in relation to speech perception outcomes in the presence of noise. One of the primary objectives of this thesis has been to investigate LF pitch perception skills in a group of pediatric CI recipients in comparison to normal hearing (NH) children. Another objective was to introduce a new assessment tool, the Italian STARR test which was based on measurement of speech perception using a roving-level adaptive method where the presentation level of both speech and noise signals varied across sentences. The STARR test attempts to reflect a better representation of real world listening conditions where background noise is usually present and speech intensity varies according to vocal capacity as well as the distance of the speaker. The Italian STARR outcomes in NH adults were studied to produce normative data, as well as to evaluate interlist variability and learning effects. Finally, LF pitch perception outcomes linked to availability of TFS were investigated in a group of adult CI recipients including bimodal users in relation to speech perception, in particular Italian STARR outcomes. Results were interesting: Although the majority of CI recipient children showed abnormal outcomes for A§E, their scores were considerably better than in the adult CI users. Age had a statistically significant effect on performance in both children and adults; younger children and older adults tended to show poorer performance. Similarly, CI recipient adults (even the better performers) showed abnormal STARR outcomes in comparison to NH subjects and group differences were statistically significant. The duration of profound deafness before implantation had a significant effect on STARR performance. On the other hand, the significant effect of CI thresholds re-emphasized the sensitivity of the test to lower level speech which a CI user can face very often during everyday life. Analysis revealed statistically significant correlations between HI/DI and STARR performance. Moreover, contralateral hearing aid users showed significant bimodal benefit for both HI/DI and STARR tests. Overall findings confirmed the usefulness of evaluating both LF pitch and speech perception in order to track changes in TFS sensitivity for CI recipients over time and across different listening conditions which might be provided by future technological advances as well as to study individual differences

    Cochlear implant outcomes and genetic mutations in children with ear and brain anomalies

    Get PDF
    Introduction. Cochlear implantation (CI) was a significant surgical innovation in the 20th century and represented the first artificial sensory organ that was applied in clinical medicine. Currently, CI is still one of the most effective medical procedures. Nonetheless, cochlear implantation in adults and children represents a controversial issue from an economic, clinical and ethical point of view, especially in specific clinical conditions that could compromise the CI outcome and drastically reduce the chance of an acceptable development of perceptual and linguistic capabilities. These conditions should certainly include the presence of inner ear malformations or brain abnormalities. Objectives. The aims of this work were to study the diagnostic value of high resolution computed tomography (HRCT) and magnetic resonance imaging (MRI) in children with sensorineural hearing loss who were candidates for cochlear implants and to analyse the anatomic abnormalities of the ear and brain in patients who underwent cochlear implantation. We analysed the effects of ear malformations and brain anomalies on the CI outcomes. Finally, we described the genetic mutations that we found in the study group. A control study group of implanted patients without ear and brain anomalies was obtained (virtually) from clinical and literature data for statistical purposes. Materials and methods. The present study is a retrospective observational review of cochlear implant outcomes among hearing-impaired children who presented ear and/or brain anomalies at neuroimaging investigations with MRI and HRCT. Furthermore, genetic results from molecular genetic investigations (GJB2/GJB6 and, additionally, in selected cases, SLC26A4 or mitochondrial-DNA mutations) on this study group were herein described. Longitudinal and cross-sectional analysis was conducted using statistical tests. Results. Between 1 January 1996 and 1 April 2012 at the ENT-Audiology Department of the University Hospital of Ferrara, 620 cochlear implantations were performed. There were 426 implanted children at the time of the present study (who were <18 years). Among these, 143 patients (64 females and 79 males) presented ear and/or brain anomalies/lesions/malformations at neuroimaging investigations with MRI and HRCT. The age of the main study group (143 implanted children) ranged from 9 months and 16 years (average = 4.4; median = 3.0). The most common inner ear malformation is represented by an enlarged vestibular aqueduct; brain lesions are usually represented by white matter disorders. The 35delG in the GJB2 gene remain the most common mutation. Discussion and Conclusions. Good outcomes with cochlear implants are possible in patients who present with inner ear or brain abnormalities, even if central nervous system anomalies represent a negative prognostic factor that is made worse by the concomitant presence of cochlear malformations. Common cavity and stenosis of the internal auditory canal (less than 2 mm) are negative prognostic factors even if brain lesions are absent. Because the cochlear implantation is an invasive and expensive surgical procedure, the identification of predictive factors, even in hearing-impaired patients with cochlear and brain anomalies, is one of the most important goals, because it can help to guide rehabilitation programs that are tailored to meet the expectations of clinicians, teachers and parents. Our findings suggest that cochlear implantation (CI) is a safe and effective procedure even for patients with brain and inner ear abnormalities. Nonetheless, specific conditions, such as a common cavity, or in general, the absence of modiolus and the stenosis of the internal auditory canal, can increase the risk of post-operative complications and prevent the achievement of acceptable perceptual categories. For the aforementioned conditions, it is strictly recommended that cochlear implant indications, neuroimaging and surgery are performed in experienced hospitals

    The importance of "scaffolding" in clinical approach to deafness across the lifespan

    Get PDF
    Throughout the present work of thesis, the concept of scaffolding will be used as a fil rouge through the chapters. What I mean for “scaffolding approach”, therefore, is an integrated and multidisciplinary clinical and research methodology to hearing impairments that could take into account persons as a whole; an approach that needs to be continuously adapted and harmonized with the individuals, pursuant to their progress, their limits and resources, in consideration of their audiological, cognitive, emotional, personal, and social characteristics. The following studies of our research group will be presented: A study (2020) designed to assess the effects of parent training (PT) on enhancing children’s communication development (chapter two); Two studies of our research group (2016; 2020) concerning variables influencing comprehension of emotions and nuclear executive functions in deaf children with cochlear implant (chapter three and chapter four) In chapter five a presentation and description of our Mind-Active Communication program, main topics and aims, multidisciplinary organizations of group and individual sessions with a description of used materials and methodology is given. Finally, a preliminary evaluation to explore the use of this multidisciplinary rehabilitative program on quality of life, psychological wellbeing, and hearing abilities in a sample of cochlear implanted elderly persons is reported

    Réorganisation cérébrale chez l’adulte sourd : de la privation à la restauration auditive

    Full text link
    On estime que 5 % de la population dans le monde souffre d’une perte auditive handicapante, dont 34 millions d’enfants. Ce déficit perceptif, lorsqu’il survient dès la naissance ou lors des premières années de vie, a de multiples répercussions sur le développement cérébral et neurocognitif. La réorganisation cérébrale ayant cours dans le cerveau des individus privés de l’audition précocement constitue un sujet d’étude très prisé par la communauté scientifique, mais pour laquelle de nombreuses questions restent en suspens. Ainsi, les articles qui composent cette thèse ont pour objectif principal d’améliorer nos connaissances portant sur les mécanismes de réorganisation cérébrale, tant au niveau fonctionnel que structurel afin de mieux comprendre leur implication comportementale chez les individus sourds. Pour ce faire, nous avons souhaité investiguer, par le biais de l’imagerie par résonance magnétique fonctionnelle, quel était le lien entre les activations cérébrales et les performances comportementales lors d’une tâche portant sur les mouvements biologiques chez des adultes sourds congénitaux, en comparaison à des pairs neurotypiques. L’article 1 révèle que les individus sourds présentent une sensibilité accrue à la reconnaissance du mouvement biologique, et notamment des emblèmes, en comparaison à des individus neurotypique. De plus, cette spécificité comportementale observée uniquement chez les individus sourds, s’accompagne d’un recrutement extensif des régions comprises dans le gyrus temporal supérieur, et tout particulièrement le cortex auditif primaire ainsi que le planum temporale. Nos résultats supportent la présence d’une réorganisation intermodale qui s’exprime par le recrutement cérébral des régions auditives lors de stimulations visuelles complexes, entraînant une amélioration de la reconnaissance des mouvements biologiques chez les adultes sourds. Par la suite, nous avons souhaité préciser les mécanismes de réorganisation cérébrale de type structurel. En raison de l’hétérogénéité des résultats rapportés précédemment dans la littérature à propos des changements de matière grise et de matière blanche chez les enfants, les adolescents et les adultes sourds privés de l’audition précocement, la réalisation d’une revue systématique a permis de répertorier l’ensemble des changements structurels obtenus par le biais de diverses techniques d’analyse en imagerie par résonance magnétique. L’article 2 de la présente thèse offre une généralisation des altérations structurelles et intègre une visée clinique à la compréhension de ces changements anatomiques et notamment leur impact sur le développement langagier et neurocognitif. Mis ensemble, ces résultats contribuent à une meilleure appréciation des changements cérébraux à la suite d’une privation précoce de l’audition. En outre, ils offrent une perspective développementale à ces changements par la description de comportements adaptatifs à la situation de handicap auditif, ainsi que du profil neurocognitif de ces individus, dans le but d’apporter de nouvelles pistes aux stratégies de restauration de l’audition et du langage.It is estimated that 5% of the world’s population suffers from a disabling hearing loss, including 34 million children. This sensory deficit, when it occurs at birth or in the first years of life, has multiple repercussions on the brain and neurocognitive development. The brain reorganization taking place in the brain of early-deaf individuals is an area of research highly valued by the scientific community but for which many questions remain unanswered. Thus, the main objective of the articles in this thesis is to improve our knowledge of brain reorganization mechanisms, both at the functional and structural levels, in deaf individuals. This will allow a better understanding of their impact on the behavioural adaptations of deaf individuals. To do this, we investigated, through functional magnetic resonance imaging, the relationship between brain activation and behavioural performance in a task involving biological motions in early-deaf adults, compared to hearing peers. Article 1 reveals that deaf individuals are more sensitive to the recognition of biological motion, including emblems, than hearing individuals. In addition, this behavioural specificity, observed only in deaf individuals, is accompanied by extensive recruitment of the regions included in the superior temporal gyrus, such as the primary auditory cortex but more particularly, the planum temporale. Our results support the presence of intermodal reorganization, which is expressed by brain recruitment of auditory regions during complex visual stimuli, leading to improved recognition of the biological motion in early deaf adults. On the other hand, we wanted to specify the mechanisms of structural brain reorganization. Due to the heterogeneity of the results previously reported in the literature on changes in grey matter and white matter in early-deaf children, adolescents, and adults, the completion of a systematic review identified all the structural changes obtained through various magnetic resonance imaging analysis techniques. The second article of this thesis offers a generalization of structural alterations. It also integrates a clinical frame to the understanding of these anatomical changes to optimize the language and neurocognitive development of these individuals. Together, these results contribute to a better appreciation of brain changes following an early hearing loss at both the functional and structural levels. Besides, they offer a developmental perspective to these changes by describing adaptive behaviours and the neurocognitive profile of these individuals, with providing new insights into hearing and language restoration strategies

    Pitch perception and signal processing in electric hearing

    Get PDF
    A study comprised of six hearing experiments was conducted in order to investigate parameters to influence the pitch perception elicited by direct electric stimulation of the auditory nerve. In addition, a new stimulation strategy for the cochlear implant COMBI 40+ (MED-EL, Innsbruck, Austria) was developed and tested. The results derived from a total number of 16 subjects reveal a dominating influence of the place of stimulation in contrast to the rate of stimulation on pitch perception. It was shown that the electrode distance of 2.4 mm for this device is sufficient to allow discriminable electrodes in pitch along the whole array. The influence of stimulation rate on pitch is limited to pulse rates up to about 300 pps. Within this range, the just noticeable change of pitch elicited by pulse rate as well as modulation rate amounts to about 25% of the base rate. In addition it was observed that the sound quality increases with increasing pulse rate up to about 566 pps independent of electrode location. Subjects with residual hearing at the non-implanted ear revealed that the pitch elicited by the most apical electrode depends on the insertion depth of the array and is linearly increasing with electrode location (40 Hz/mm). The results of the hearing experiments were implemented to modify the well known CIS strategy. The new development (termed RateCIS) was designed in order to increase the amount of transmitted spectral information, thus the number of effective channels. Six electrodes were selected to switch adaptively between a high stimulation rate (1515 pps) and a low stimulation rate (252 pps). A test of the RateCIS strategy showed that results for speech recognition are comparable to the CIS strategy. The RateCIS strategy was subjectively preferred by some of the subjects although the majority preferred the CIS strategy for speech recognition and sound quality. Concerning the recognition and appraisal of music however, the RateCIS strategy was preferred by the majority of subjects. Regarding the fact, that the tests were conducted during one day without time for adaptation to the new signal processing, the RateCIS strategy could serve as an interesting option especially for music appraisal
    corecore