1,861,805 research outputs found

    Difference Equations Compatible with Trigonometric KZ Differential Equations

    Get PDF
    The trigonometric KZ equations associated with a Lie algebra \g depend on a parameter \lambda\in\h where \h\subset\g is the Cartan subalgebra. We suggest a system of dynamical difference equations with respect to λ\lambda compatible with the KZ equations. The dynamical equations are constructed in terms of intertwining operators of \g-modules.Comment: 23 pages, AmsTeX, third version, some misprints were correcte

    A survey of Hirota's difference equations

    Full text link
    A review of selected topics in Hirota's bilinear difference equation (HBDE) is given. This famous 3-dimensional difference equation is known to provide a canonical integrable discretization for most important types of soliton equations. Similarly to the continuous theory, HBDE is a member of an infinite hierarchy. The central point of our exposition is a discrete version of the zero curvature condition explicitly written in the form of discrete Zakharov-Shabat equations for M-operators realized as difference or pseudo-difference operators. A unified approach to various types of M-operators and zero curvature representations is suggested. Different reductions of HBDE to 2-dimensional equations are considered. Among them discrete counterparts of the KdV, sine-Gordon, Toda chain, relativistic Toda chain and other typical examples are discussed in detail.Comment: LaTeX, 43 pages, LaTeX figures (with emlines2.sty

    Relative controllability of linear difference equations

    Get PDF
    In this paper, we study the relative controllability of linear difference equations with multiple delays in the state by using a suitable formula for the solutions of such systems in terms of their initial conditions, their control inputs, and some matrix-valued coefficients obtained recursively from the matrices defining the system. Thanks to such formula, we characterize relative controllability in time TT in terms of an algebraic property of the matrix-valued coefficients, which reduces to the usual Kalman controllability criterion in the case of a single delay. Relative controllability is studied for solutions in the set of all functions and in the function spaces LpL^p and Ck\mathcal C^k. We also compare the relative controllability of the system for different delays in terms of their rational dependence structure, proving that relative controllability for some delays implies relative controllability for all delays that are "less rationally dependent" than the original ones, in a sense that we make precise. Finally, we provide an upper bound on the minimal controllability time for a system depending only on its dimension and on its largest delay

    Invariant manifolds for analytic difference equations

    Full text link
    We use a modification of the parameterization method to study invariant manifolds for difference equations. We establish existence, regularity, smooth dependence on parameters and study several singular limits, even if the difference equations do not define a dynamical system. This method also leads to efficient algorithms that we present with their implementations. The manifolds we consider include not only the classical strong stable and unstable manifolds but also manifolds associated to non-resonant spaces. When the difference equations are the Euler-Lagrange equations of a discrete variational we present sharper results. Note that, if the Legendre condition fails, the Euler-Lagrange equations can not be treated as a dynamical system. If the Legendre condition becomes singular, the dynamical system may be singular while the difference equation remains regular. We present numerical applications to several examples in the physics literature: the Frenkel-Kontorova model with long-range interactions and the Heisenberg model of spin chains with a perturbation. We also present extensions to finite differentiable difference equations.Comment: 3 figures. Check the accompanying files for C code and support on figure generatio

    On the discrete and continuous Miura Chain associated with the Sixth Painlevé Equation

    Get PDF
    A Miura chain is a (closed) sequence of differential (or difference) equations that are related by Miura or B\"acklund transformations. We describe such a chain for the sixth Painlev\'e equation (\pvi), containing, apart from \pvi itself, a Schwarzian version as well as a second-order second-degree ordinary differential equation (ODE). As a byproduct we derive an auto-B\"acklund transformation, relating two copies of \pvi with different parameters. We also establish the analogous ordinary difference equations in the discrete counterpart of the chain. Such difference equations govern iterations of solutions of \pvi under B\"acklund transformations. Both discrete and continuous equations constitute a larger system which include partial difference equations, differential-difference equations and partial differential equations, all associated with the lattice Korteweg-de Vries equation subject to similarity constraints
    corecore