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Abstract. The trigonometric KZ equations associated with a Lie algebra g depend

on a parameter λ ∈ h where h ⊂ g is the Cartan subalgebra. We suggest a system

of dynamical difference equations with respect to λ compatible with the KZ equa-

tions. The dynamical equations are constructed in terms of intertwining operators of

g -modules.

1. Introduction

The trigonometric KZ equations associated with a Lie algebra g depend on a param-
eter λ ∈ h where h ⊂ g is the Cartan subalgebra. We suggest a system of dynamical
difference equations with respect to λ compatible with the trigonometric KZ differential
equations. The dynamical equations are constructed in terms of intertwining operators
of g -modules.

Our dynamical difference equations are a special example of the difference equations
introduced by Cherednik. In [Ch1, Ch2] Cherednik introduces a notion of an affine R-
matrix associated with the root system of a Lie algebra and taking values in an algebra
F with certain properties. Given an affine R-matrix, he defines a system of equations
for an element of the algebra F .

In this paper we construct an example of an affine R-matrix and call the corresponding
system of equations the dynamical equations. In our example, F is the algebra of
functions of complex variables z1, ..., zn and λ ∈ h taking values in the tensor product of

1 Supported in part by RFFI grant 99-01-00101.
2 Supported in part by NSF grant DMS-9801582.
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n copies of the universal enveloping algebra of g . The fact that our dynamical difference
equations are compatible with the trigonometric KZ differential equations is a remarkable
property of our affine R-matrix.

There is a similar construction of dynamical difference equations compatible with the
qKZ difference equations associated with a quantum group. The dynamical difference
equations in that case are constructed in the same way in terms of interwining operators
of modules over the quantum group. We will describe this construction in a forthcoming
paper.

There is a degeneration of the trigonometric KZ differential equations to the stan-
dard (rational) KZ differential equations. Under this limiting procedure the dynamical
difference equations constructed in this paper turn into the system of differential equa-
tions compatible with the standard KZ differential equations and described in [FMTV].
In [FMTV] we proved that the standard hypergeometric solutions of the standard KZ
equations [SV, V] satisfy also the dynamic differential equations of [FMTV].

The trigonometric KZ differential equations also have hypergeometric solutions, see
[Ch3, EFK]. We conjecture that the hypergeometric solutions of the trigonometric KZ
differential equations also solve the dynamical difference equations of this paper.

In Section 2 we study relations between intertwining operators of g -modules and the
Weyl group W of g . For any finite dimensional g -module V and w ∈ W we construct a
rational function Bw,V : C → End (V ). The operators Bw,V (λ) are used later to construct
an affine R-matrix and dynamical equations.

In Section 3 we define the dynamical difference equations for g = slN in terms of
operators Bw,V (λ) directly (without introducing affine R-matrices). For g = slN , we
prove that the dynamical equations are compatible with the trigonometric KZ differential
equations. We give a formula for the determinant of a square matrix solution of the
combined system of KZ and dynamical equations.

In Section 4 we review [Ch1, Ch2] and construct the dynamical difference equations
for any simple Lie algebra g . We show that the dynamical equations are compatible
with the trigonometric KZ equations if the Lie algebra g has minuscle weights, i.e.
is not of type E8, F4, G2. We conjecture that the dynamical difference equations and
trigonometric KZ equations are compatible for any simple Lie algebra.

We thank I.Cherednik for valuable discussions and explanation of his articles [Ch1,
Ch2] and P.Etingof who taught us all about the Weyl group and intertwining operators.

2. Intertwining Operators

2.1. Preliminaries. Let g be a complex simple Lie algebra with root space decompo-
sition g = h ⊕ (⊕α∈Σg α) where Σ ⊂ h ∗ is the set of roots.

Fix a system of simple roots α1, ..., αr. Let Γ be the corresponding Dynkin diagram,
and Σ± — the set of positive (negative) roots. Let n± = ⊕α∈Σ±

g α. Then g = n+⊕h⊕n−.
Let ( , ) be an invariant bilinear form on g . The form gives rise to a natural identifi-

cation h → h ∗. We use this identification and make no distinction between h and h ∗.
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This identification allows us to define a scalar product on h ∗. We use the same notation
( , ) for the pairing h⊗ h ∗ → C.

We use the notation: Q = ⊕r
i=1Zαi - root lattice; Q

+ = ⊕r
i=1Z≥0αi; Q

∨ = ⊕r
i=1Zα

∨
i -

dual root lattice, where α∨ = 2α/(α, α); P = {λ ∈ h | (λ, α∨
i ) ∈ Z} - weight lattice; P+ =

{λ ∈ h | (λ, α∨
i ) ∈ Z≥0} - cone of dominant integral weights; ωi ∈ P+ - fundamental

weights: (ωi, α
∨
j ) = δij ; ρ = 1

2

∑

α∈Σ+
α =

∑r

i=1 ωi; P
∨ = ⊕r

i=1Zω
∨
i - dual weight lattice,

where ω∨
i -dual fundamental weights: (ω∨

i , αj) = δij .
Define a partial order on h putting µ < λ if λ− µ ∈ Q+.
Let si : h → h denote a simple reflection, defined by si(λ) = λ− (α∨

i , λ)αi; W - Weyl
group, generated by s1, ..., sr. The following relations are defining:

s2i = 1, (sisj)
m = 1 for m = 2, 3, 4, 6,

where m = 2 if αi and αj are not neighboring in Γ, otherwise, m = 3, 4, 6 if 1,2,3 lines
respectively connect αi and αj in Γ. For an element w ∈ W , denote l(w) the length of
the minimal (reduced) presentation of w as a product of generators s1, ..., sr.

Let Ug be the universal enveloping algebra of g ; Ug⊗n - tensor product of n copies of
Ug ; ∆(n) : Ug → Ug⊗n - the iterated comultiplication (in particular, ∆(1) is the identity,
∆(2) is the comultiplication); Ug⊗n

0 = {x ∈ Ug⊗n | [∆(n)(h), x] = 0 for any h ∈ h } -
subalgebra of weight zero elements.

For α ∈ Σ choose generators eα ∈ g α so that (eα, e−α) = 1. For any α, the triple

Hα = α∨, Eα =
2

(α, α)
eα, Fα = e−α

forms an sl2-subalgebra in g , [Hα, Eα] = 2Eα, [Hα, Fα] = −2Fα, [Eα, Fα] = Hα.
A dual fundamental weight ω∨

i is called minuscule if (ω∨
i , α) is 0 or 1 for all α ∈ Σ+,

i.e. for any positive root α =
∑r

i=1miαi, the coefficient mi is either 0 or 1. For a root
system of type Ar all dual fundamental weights are minuscule. There is no minuscule
dual fundamental weight for E8, F4, G2. For a minuscule dual fundamental weight ω∨

i ,
define an element w[i] = w0w

i
0 ∈ W where w0 (respectively, wi

0) is the longest element

in W (respectively, in W
i generated by all simple reflections sj preserving ω∨

i ).

Lemma 1. Let α be a positive root. Then w[i](α) ∈ Σ+ if (ω∨
i , α) = 0 and w[i](α) ∈ Σ−

if (ω∨
i , α) = 1.

Let G be the simply connected complex Lie group with Lie algebra g , H ⊂ G the
Cartan subgroup corresponding to h , N(H ) = {x ∈ G | xHx−1 = H } the normalizer
of H . Then the Weyl group is canonically isomorphic to N(H )/H . The isomorphism
sends x to Adx|h .

Let V be a finite dimensional g -module with weight decomposition V = ⊕µ∈hV [µ].
G acts on V so that H acts trivially on V [0]. Thus the action of W on V [0] is well
defined. For any n, the Weyl group in the same way acts also on Ug⊗n

0 .



4 V. TARASOV AND A. VARCHENKO

Lemma 2. For α ∈ Σ and k ∈ Z≥0, consider e
k
αe

k
−α ∈ Ug 0 and eα⊗ e−α ∈ Ug⊗2

0 . Then
for any w ∈ W ,

w(ekαe
k
−α) = ekw(α)e

k
−w(α), w(eα⊗ e−α) = ew(α)⊗ e−w(α).

Proof. Let x ∈ N(H ) be a lifting of w. Adx : g → g is an automorphism of g preserving
the invariant scalar product and sending g β to g w(β) for all β. Thus, Adxeβ = cx,βew(β)

for suitable numbers cx,β and cx,αcx,−α = 1.

Let x1, ..., xr be an orthonormal basis in h , set

Ω0 =
1

2

r
∑

i=1

xi⊗ xi, Ω+ = Ω0 +
∑

α∈Σ+

eα⊗ e−α, Ω− = Ω0 +
∑

α∈Σ+

e−α⊗ eα.

Define the Casimir operator Ω and the trigonometric R-matrix r(z) by

Ω = Ω+ + Ω− , r(z) =
Ω+z + Ω−

z − 1
.

For any x ∈ Ug , we have ∆(x) Ω = Ω∆(x). We will use a more symmetric form of the
trigonometric R-matrix: r(z1/z2).

The Weyl group acts on r(z1/z2),Ω ∈ Ug⊗2
0 . Ω is Weyl invariant. For any w ∈ W ,

w(r(z1/z2)) =
1

z1 − z2
(
z1 + z2

2

r
∑

i=1

xi⊗ xi +
∑

α∈Σ+

(z1 ew(α)⊗ e−w(α) + z2 ew(−α)⊗ ew(α)) ).

Lemma 3. For a minuscule dual fundamental weight ω∨
i ,

z
−(ω∨

i )(1)

1 z
−(ω∨

i )(2)

2 r(z1/z2)z
(ω∨

i )(1)

1 z
(ω∨

i )(2)

2 = w−1
[i] (r(z1/z2)) .

Proof. Using Lemma 1 it is easy to see that both sides of the equation are equal to

1

z1 − z2
(
z1 + z2

2

r
∑

i=1

xi⊗ xi +
∑

α∈Σ+, (α,ω∨
i )=0

(z1 eα⊗ e−α + z2 e−α⊗ eα) +

∑

α∈Σ+, (α,ω∨
i )=1

(z1 e−α⊗ eα + z2 eα⊗ e−α) ) . �

2.2. The Trigonometric KZ Equations. Let V = V1⊗ ...⊗ Vn be a tensor product
of g -modules. For κ ∈ C and λ ∈ h , introduce the KZ operators ∇i(λ, κ), i = 1, ..., n,
acting on functions u(z1, ..., zn) of n complex variables with values in V and defined by

∇i(λ, κ) = κzi
∂

∂zi
−
∑

j, j 6=i

r(zi/zj)
(i,j) − λ(i).

Here r(i,j), λ(i) denote r acting in the i-th and j-th factors of the tensor product and λ
acting in the i-th factor.
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The trigonometric KZ equations are the equations

∇i(λ, κ)u(z1, ..., zn, λ) = 0 , i = 1, ..., n ,(1)

see [EFK]. The KZ equations are compatible, [∇i,∇j] = 0.

2.3. Intertwining Operators, Fusion Matrices, [ES, EV1]. For λ ∈ h , let Mλ be
the Verma module over g with highest weight λ and highest weight vector vλ. We
have n+vλ = 0, and hvλ = (h, λ)vλ for all h ∈ h . Let Mλ = ⊕µ≤λMλ[µ] be the
weight decomposition. The Verma module is irreducible for a generic λ. Define the dual
Verma module M∗

λ to be the graded dual space ⊕µ≤λM
∗
λ [µ] equipped with the g -action:

〈u, av〉 = −〈au, v〉 for all a ∈ g , u ∈ Mλ, v ∈ M∗
λ . Let v

∗
λ be the lowest weight vector of

M∗
λ satisfying 〈vλ, v

∗
λ〉 = 1.

Let V be a finite dimensional g -module with weight decompostion V = ⊕µ∈hV [µ]. For
λ, µ ∈ h consider an intertwining operator Φ : Mλ → Mµ⊗ V . Define its expectation
value by 〈Φ〉 = 〈Φ(vλ), v

∗
µ〉 ∈ V [λ−µ]. IfMµ is irreducible, then the map Homg(Mλ,Mµ⊗

V ) → V [λ− µ], Φ 7→ 〈Φ〉, is an isomorphism. Thus for any v ∈ V [λ− µ] there exists a
unique intertwining operator Φv

λ : Mλ → Mµ⊗V such that Φv
λ(vλ) ∈ vλ⊗v+⊕ν<µMµ[ν]⊗

V .
Let V,W be finite-dimensional g -modules and v ∈ V [µ], w ∈ W [ν]. Consider the

composition

Φw,v
λ : Mλ

Φv
λ−→ Mλ−µ ⊗ V

Φw
λ−µ

−→ Mλ−µ−ν ⊗W ⊗ V.

Then Φw,v
λ ∈ Homg(Mλ,Mλ−µ−ν ⊗W ⊗ V ). Hence, for a generic λ there exists a unique

element u ∈ (V ⊗W )[µ+ν] such that Φu
λ = Φw,v

λ . The assignment (w, v) 7→ u is bilinear,
and defines an h -linear map

JWV (λ) : W ⊗ V → W ⊗ V.

The operator JWV (λ) is called the fusion matrix of W and V . The fusion matrix JWV (λ)
is a rational function of λ. JWV (λ) is strictly lower triangular, i.e. J = 1 + L where
L(W [ν]⊗ V [µ]) ⊂ ⊕τ<ν, µ<σW [τ ]⊗ V [σ]. In particular, JWV (λ) is invertible.

If V1, . . . Vn are h -modules and F (λ) : V1 ⊗ . . . ⊗ Vn → V1 ⊗ . . . ⊗ Vn is a linear
operator depending on λ ∈ h , then for any homogeneous u1, . . . , un, ui ∈ Vi[νi], we
define F (λ− h(i))(u1 ⊗ . . .⊗ un) to be F (λ− νi)(u1 ⊗ . . .⊗ un).

There is a universal fusion matrix J(λ) ∈ Ug⊗2
0 such that JWV (λ) = J(λ)|W⊗V for all

W,V . The universal fusion matrix J(λ) is the unique solution of the [ABRR] equation

J(λ) (1⊗ (λ+ ρ−
1

2

r
∑

i=1

x2
i )) = (1⊗ (λ+ ρ−

1

2

r
∑

i=1

x2
i ) +

∑

α∈Σ+

e−α ⊗ eα)J(λ).

such that
(

J(λ)− 1
)

∈ b−(Ub−)⊗ (Ub+)b+ where b± = h ⊕ n±.
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We transform this equation to a more convenient form. The equation can be written
as

J(λ) (λ+ ρ−
1

2

r
∑

i=1

x2
i )

(2) = ((λ+ ρ−
1

2

r
∑

i=1

x2
i )

(2) −
1

2

r
∑

i=1

xi⊗ xi + Ω−)J(λ).

We make a change of variables: λ 7→ λ− ρ+ 1
2
(h(1) + h(2)). Then the equation takes the

form

J(λ− ρ+
1

2
(h(1) + h(2))) (λ+

1

2
(h(1) + h(2))−

1

2

r
∑

i=1

x2
i )

(2) =

((λ+
1

2
(h(1) + h(2))−

1

2

r
∑

i=1

x2
i )

(2) −
1

2

r
∑

i=1

xi⊗ xi + Ω−)J(λ− ρ+
1

2
(h(1) + h(2))).

Notice that (h(1) + h(2))(2) =
∑r

i=1 x
(2)
i (x

(1)
i + x

(2)
i ). Now the equation takes the form

J(λ− ρ+
1

2
(h(1) + h(2))) (λ(2) + Ω0) = (λ(2) + Ω−) J(λ− ρ+

1

2
(h(1) + h(2))).(2)

For w ∈ W , let w(J(λ)) be the image of J(λ) under the action of w. Let x ∈ N(H )
be a lifting of w. Let W,V be finite dimensional g -modules. Then

w(J(λ))|W⊗V = xJWV (λ)x
−1,(3)

and RHS does not depend on the choice of x.

2.4. Main Construction, I. Introduce a new action of the Weyl group W on h by

w · λ = w(λ+ ρ)− ρ.

Remind facts from [BGG].
Let Mµ,Mλ be Verma modules. Two cases are possible: a) Homg(Mµ,Mλ) = 0,

b) Homg(Mµ,Mλ) = C and every nontrivial homomorphism Mµ → Mλ is an embedding.
Let Mλ be a Verma module with dominant weight λ ∈ P+. Then Homg(Mµ,Mλ) = C

if and only if there is w ∈ W such that µ = w · λ.
Let w = sik . . . si1 be a reduced presentation. Set α1 = αi1 and αj = (si1 . . . sij−1

)(αij )
for j = 2, . . . , k. Let nj = (λ + ρ, (αj)∨). For a dominant λ ∈ P+, nj are positive
integers.

Lemma 4. The collection of integers n1, . . . nk and the product (e−αik
)nk · · · (e−αi1

)n1 do
not depend on the reduced presentation.

Proof. It is known that α1, . . . , αk are distinct positive roots and {α1, . . . , αk} = {α ∈
Σ+ | w(α) ∈ Σ−} . Hence, the collection n1, . . . nk does not depend on the reduced
presentation.

The vector (e−αik
)nk · · · (e−αi1

)n1vλ is a singular vector in Mλ. If w = si′
k
. . . si′1 is

another reduced presentation, then the vectors (e−αik
)nk . . . (e−αi1

)n1vλ and

(e−αi′
k

)n
′
k . . . (e−αi′1

)n
′
1vλ are proportional. Since Mλ is a free n−-module, we have
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(e−αi′
k

)n
′
k . . . (e−αi′

1
)n

′
1 = c (e−αik

)nk . . . (e−αi1
)n1 in n− for a suitable c ∈ C. c = 1

since the monomials are equal when projected to the commutative polynomial algebra
generated by e−α1 , . . . , e−αr

.

Define a singular vector vλw·λ ∈ Mλ by

vλw·λ =
(e−αik

)nk

n1!
. . .

(e−αi1
)n1

nk!
vλ .(4)

This vector does not depend on the reduced presentation by Lemma 4.
For all λ ∈ P+, w ∈ W , fix an embedding Mw·λ →֒ Mλ sending vw·λ to vλw·λ.
Let V be a finite dimensional g -module, V = ⊕ν∈hV [ν] the weight decomposition,

P (V ) = {ν ∈ h | V [ν] 6= 0} the set of weights of V . We say that λ ∈ P+ is generic with
respect to V if

I. For any ν ∈ P (V ) there exist a unique intertwining operator Φv
λ : Mλ → Mλ−ν⊗ V

such that Φv
λ(vλ) = vλ−ν⊗ v+ lower order terms.

II. For any w,w′ ∈ W , w 6= w′, and any ν ∈ P (V ), the vector w · λ−w′ · (λ− ν) does
not belong to P (V ).

It is clear that all dominant weights lying far inside the cone of dominant weights are
generic with respect to V .

Lemma 5. Let λ ∈ P+ be generic with respect to V . Let v ∈ V [ν]. Consider the
intertwining operator Φv

λ : Mλ → Mλ−ν⊗ V . For w ∈ W , consider the singular vector
vλw·λ ∈ Mλ. Then there exists a unique vector Aw,V (λ)(v) ∈ V [w(ν)] such that

Φv
λ(v

λ
w·λ) = vλ−ν

w·(λ−ν)⊗Aw,V (λ)(v) + lower order terms .

Proof. Φv
λ(v

λ
w·λ) is a singular vector in Mλ−ν⊗ V . It has to have weight components of

the form vλ−ν
w′·(λ−ν)⊗u for suitable w′ ∈ W and u ∈ V . Since λ is generic, we have w = w′

and Φv
λ(v

λ
w·λ) is of the required form for a suitable Aw,V (λ)(v) ∈ V [w(ν)].

For generic λ ∈ P+, Lemma 5 defines a linear operator Aw,V (λ) : V → V such that
Aw,V (λ)(V [ν])) ⊂ V [w(ν)] for all ν ∈ P (V ). It follows from calculations in Section 2.5
that Aw,V (λ) is a rational function of λ ∈ h .

The following Lemmas are easy consequences of definitions.

Lemma 6. If w1, w2 ∈ W and l(w1w2) = l(w1) + l(w2), then

Aw1w2,V (λ) = Aw1,V (w2 · λ)Aw2,V (λ) .

Lemma 7. Let W,V be finite dimensional g -modules. Let w ∈ W . Then

Aw,W⊗V (λ)JWV (λ) = JWV (w · λ)(Aw,W (λ− h(2))⊗Aw,V (λ)) .

Let xw ∈ N(H ) ⊂ G be a lifting of w ∈ W . For a finite dimensional g -module V ,
define an operator

Bxw,V (λ) : V → V , v 7→ x−1
w Aw,V (λ)v .
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Bxw,V preserves the weight of elements of V .
Lemma 7 implies

Bxw,W⊗V (λ)JWV (λ) = (x−1
w JWV (w · λ)xw) (Bxw,W (λ− h(2))⊗Bxw,V (λ)) ,

cf. (3).
The operator Bxw,V depends on the choice of xw. If xwg, g ∈ H , is another lifting of

w, then Bxwg,V = g−1Bxw,V .
The operators Bxw,V (λ), w ∈ W , are defined now for generic dominant λ and depend

on the choice of liftings xw. In the next two Sections we fix a normalization Bw,V (λ)
of Bxw,V (λ) so that Bw,V (λ) → 1 as λ → ∞. We show that for any w ∈ W , there
is a universal Bw(λ) ∈ Ug 0 such that Bw(λ)|V = Bw,V (λ) for every finite dimensional
g -module V . For any w ∈ W , we present Bw(λ) as a suitable product of operators
Bsi(λ) corresponding to simple reflections.

2.5. Operators Bxw,V (λ) for g = sl2. Consider sl2 with generators H,E, F and rela-
tions [H,E] = 2E, [H,F ] = −2F, [E, F ] = H . Let α1 be the positive root. Identifying
h and h ∗, we have α1 = α∨

1 = H , ω1 = ω∨
1 = H/2, W = {1, s1}.

Let λ = lω1, l ∈ Z≥0, be a dominant weight. Then s1 · λ = −(l + 2)ω1. For any
dominant weight λ, fix an embedding

Ms1·λ →֒ Mλ, vs1·λ 7→ vλs1·λ =
F (λ,α1)+1vλ
((λ, α1) + 1)!

as in Section 2.4.
For m ∈ Z≥0, let Lm be the irreducible sl2 module with highest weight mω1. Lm has

a basis vm0 , ..., v
m
m such that

Hvmk = (m− 2k)vmk , F vmk = (k + 1)vmk+1 , Evmk = (m− k + 1)vmk−1 .

For g = sl2, we have G = SL(2,C). Then H ⊂ G is the subgroup of diagonal
matrices. Fix a lifting x ∈ N(H ) of s1, set x = (xij) where x11 = x22 = 0, x12 = −1,
x21 = 1. Then the action of x in Lm is given by vmk 7→ (−1)kvmm−k for any k. We have
x = exp(−E) exp(F ) exp(−E).

For t ∈ C, introduce

p(t; H,E, F ) =

∞
∑

k=0

F kEk 1

k!

k−1
∏

j=0

1

(t−H − j)
.(5)

p(t; H,E, F ) is an element of U(sl2)0.

Theorem 8. Let λ be a dominant weight for sl2. Let Lm, x be as above. Let Bx,Lm
(λ) :

Lm → Lm be the operator defined in Section 2.4. Then for k = 0, ..., m,

(6)

Bx,Lm
(λ)vmk =

((λ, α∨
1 ) + 2)((λ, α∨

1 ) + 3) · · · ((λ, α∨
1 ) + k + 1)

((λ, α∨
1 )−m+ k + 1)((λ, α∨

1 )−m+ k + 2) · · · ((λ, α∨
1 )−m+ 2k)

vmk
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and

p((λ, α∨
1 ); H,E, F )|Lm

= Bx,Lm
(λ) .(7)

Corollary 9. Bx,Lm
(λ) is a rational function of (λ, α∨

1 ). Bx,Lm
(λ) tends to 1 as (λ, α∨

1 )
tends to infinity.

The Theorem is proved by direct verification. First we calculate explicitly Φ
vm
k

λ (vλ),

Φ
vm
k

λ ( F (λ,α∨
1 )+1

((λ,α∨
1 )+1)!

vλ ), and then get an expression for Bx,Lm
(λ)vmk as a sum of a hyperge-

ometric type. Using standard formulas from [GR] we see that Bx,Lm
(λ)vmk is given by

(6). Similarly we check that p((λ, α∨
1 ); H,E, F ) vmk gives the same result. Thus we get

(7). �
Formula (6) becomes more symmetric if λ is replaced by λ−ρ+ 1

2
ν where ν = mω1−kα1

is the weight of vmk , then

p((λ+
1

2
ν, α∨

1 )− 1; H,E, F )vmk =
k−1
∏

j=0

(λ, α∨
1 ) +

m
2
− j

(λ, α∨
1 )−

m
2
+ j

vmk .(8)

Theorem 10.

p(−t− 2; −H,F,E) · p(t; H,E, F )) =
t−H + 1

t+ 1
.

To prove this formula it is enough to check that RHS and LHS give the same result
when applied to vmk ∈ Lm, which is done using (8). �

Notice that p(t; −H,F,E) = s1(p(t; H,E, F )).
Remark. Let J(λ) =

∑

i ai⊗bi be the universal fusion matrix of sl2. Following [EV2]
introduce S(Q)(λ) ∈ U(sl2)0 as S(Q)(λ) =

∑

i S(ai)bi where S(ai) is the antipode of
ai. The action of S(Q)(λ) in Lm was computed in [EV2]. Comparing the result with
Theorem 8, one sees that p((λ, α∨

1 ); H,E, F ) is equal to (S(Q)(λ))−1 up to a simple
change of argument λ.

Corollary 11. Let As1,Lm
(λ) : Lm → Lm be the operator defined in Section 2.4. Then

As1,Lm
(λ) = x p((λ, α∨

1 ); H,E, F )|Lm
. As1,Lm

(λ) is a rational function of (λ, α∨
1 ). As1,Lm

(λ)
tends to x as (λ, α∨

1 ) tends to infinity.

2.6. Main Construction, II. Return to the situation considered in Section 2.4.
For any simple root αi, the triple Hαi

, Eαi
, Fαi

defines an embedding sl2 →֒ g and
induces an embedding SL(2,C) →֒ G . Denote xi ∈ G the image under this embedding
of the element x ∈ SL(2,C) defined in Section 2.5.

Lemma 12. For i = 1, ..., r, we have xi ∈ N(H ) and Adxi
: g → g restricted to h is

the simple reflection si : h → h .

Proof. Since xi = exp(−Eαi
) exp(Fαi

) exp(−Eαi
), we have that Adxi

(Hαi
) = −Hαi

and
Adxi

(h) = h for any h ∈ h orthogonal to αi. Hence xi ∈ N(H ) and Adxi
|h = si.
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For i = 1, ..., r and λ ∈ h , set

Bsi(λ) = p((λ, α∨
i ); Hαi

, Eαi
, Fαi

)

where p(t; H,E, F ) is defined in (5). Set

Asi(λ) = xi Bsi(λ) .

For any ν ∈ P (V ), we have Asi(λ)(V [ν]) ⊂ V [si(ν)].
Let V be a finite dimensional g -module. For w ∈ W , let w = sik ...si1 be a reduced

presentation. For a generic dominant λ ∈ P+, consider the operator Aw,V (λ) : V → V
defined in Section 2.4.

Lemma 13.

Aw,V (λ) = Asik
((sik−1

...si1) · λ)|V Asik−1
((sik−2

...si1) · λ)|V ...Asi1
(λ)|V .

Proof. See Corollary 11 and Lemma 6.

Corollary 14. The operator Aw,V (λ) is a rational function of λ. Aw,V (λ) tends to
xik ...xi1 as λ tends to infinity in a generic direction. In particular, the product xik ...xi1

does not depend on the choice of the reduced presentation.

Set xw = xik ...xi1 . xw ∈ N(H ) is a lifting of w. Consider the operator Bxw,V (λ) : V → V
defined in Section 2.4 for this lifting xw. Denote this operator Bw,V (λ).

Corollary 15.

Bw,V (λ) =

(sik−1
...si1)

−1(Bsik
((sik−1

...si1) · λ))|V (sik−2
...si1)

−1(Bsik−1
((sik−2

...si1) · λ))|V ...Bsi1
(λ)|V .

Bw,V (λ) is a rational function of λ. Bw,V (λ) tends to 1 as λ tends to infinity in a generic
direction.

For any notrivial element w ∈ W and λ ∈ h , define an element Bw(λ) ∈ Ug 0 by

Bw(λ) =

(sik−1
...si1)

−1(Bsik
((sik−1

...si1) · λ)) (sik−2
...si1)

−1(Bsik−1
((sik−2

...si1) · λ))...Bsi1
(λ) .

Set Bw(λ) = 1 if w is the identity in W . We have Bw(λ)|V = Bw,V (λ), and Bw(λ) does
not depend on the choice of the reduced presentation of w.

Properties of Bw(λ).

I. If w1, w2 ∈ W and l(w1w2) = l(w1) + l(w2), then

Bw1w2(λ) = (w2)
−1(Bw1(w2 · λ))Bw2(λ) .

II. Let i = 1, ..., r, ω ∈ h , and (αi, ω) = 0, then

Bsi(λ+ ω) = Bsi(λ) .
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III. For i = 1, ..., r,

si(Bsi(si · λ)) · Bsi(λ) =
(λ, α∨

i )−Hαi
+ 1

(λ, α∨
i ) + 1

.

IV. Every relation (sisj)
m = 1 for m = 2, 3, 4, 6 in W is equivalent to a homogeneous

relation sisj... = sjsi.... Every such a homogeneous relation generates a relation
for Bsi(λ), Bsj(λ). Namely, for m = 2, the relation is

(sj)
−1(Bsi(sj · λ)) Bsj(λ) = (si)

−1(Bsj(si · λ)) Bsi(λ) ,

for m = 3, the relation is

(sjsi)
−1(Bsi((sjsi) · λ)) (si)

−1(Bsj (si · λ)) Bsi(λ) =

(sisj)
−1(Bsj((sisj) · λ)) (sj)

−1(Bsi(sj · λ)) Bsj (λ) ,

and so on.
V.

∆(Bw(λ)) J(λ) = w−1(J(w · λ)) (Bw(λ− h(2))⊗Bw(λ)) .

The operators Bw(λ) are closely connected with extremal projectors of Zhelobenko,
see [Zh1, Zh2].

2.7. Operators Bw,V . In order to study interrelations of operators Bw,V (λ) with KZ
operators it is convenient to change the argument λ.

Let V be a finite dimensional g -module. For w1, w2 ∈ W and λ ∈ h , define
w1(Bw2,V (λ)) : V → V as follows. For any ν ∈ P (V ) and v ∈ V [ν], set

w1(Bw2,V (λ)) v = w1(Bw2(λ− ρ+
1

2
ν))|V v .

In particular,

Bw,V (λ)v = Bw,V (λ− ρ+
1

2
ν)v .

w1(Bw2,V (λ)) is a meromorphic function of λ, w1(Bw2,V (λ)) tends to 1 as λ tends to
infinity in a generic direction.

Properties of Bw,V (λ).

I. If w1, w2 ∈ W and l(w1w2) = l(w1) + l(w2), then

Bw1w2,V (λ)) = w−1
2 (Bw1,V (w2(λ)))Bw2,V (λ) .

II. If i = 1, ..., r, w ∈ W , v ∈ V [ν], then

Bsi,V (λ) v = p((λ+
1

2
ν, α∨

i )− 1; Hαi
, Eαi

, Fαi
) v

and

w(Bsi,V (w
−1(λ))) v = p((λ+

1

2
ν, w(α∨

i ))− 1; Hw(αi), Ew(αi), Fw(αi)) v

where p(t; H,E, F ) is defined in (5).
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For α ∈ Σ, λ ∈ h , define a linear operator Bα
V (λ) : V → V by

B
α
V (λ)v = p((λ+

1

2
ν, α∨)− 1; Hα, Eα, Fα)v

for any v ∈ V [ν].

III.

B
α
V (λ)B

−α
V (λ)v =

(λ− 1
2
ν, α∨)

(λ+ 1
2
ν, α∨)

v

for any v ∈ V [ν].
IV. Let α ∈ Σ, ω ∈ h , and (α, ω) = 0, then

B
α
V (λ+ ω) = B

α
V (λ) .

V. Every relation (sisj)
m = 1 for m = 2, 3, 4, 6 in W is equivalent to a homogeneous

relation sisj... = sjsi.... Every such a homogeneous relation generates a relation
for Bsi,V (λ),Bsj ,V (λ). Namely, for m = 2, the relation is

(sj)
−1(Bsi,V (sj(λ))) Bsj ,V (λ) = (si)

−1(Bsj ,V (si(λ))) Bsi,V (λ) ,

for m = 3, the relation is

(sjsi)
−1(Bsi,V ((sjsi)(λ))) (si)

−1(Bsj ,V (si(λ))) Bsi,V (λ) =

(sisj)
−1(Bsj ,V ((sisj)(λ))) (sj)

−1(Bsi(sj(λ))) Bsj (λ) ,

and so on.

These relations can be written in terms of operators Bα
V (λ).

VI. For α, β ∈ Σ, denote R〈α, β〉 the subspace Rα + Rβ ⊂ h . Then

B
α
V (λ)B

β
V (λ) = B

β
V (λ)B

α
V (λ) ,

B
α
V (λ)B

α+β
V (λ)Bβ

V (λ) = B
β
V (λ)B

α+β
V (λ)Bα

V (λ) ,

B
α
V (λ)B

α+β
V (λ)Bα+2β

V (λ)Bβ
V (λ) = B

β
V (λ)B

α+2β
V (λ)Bα+β

V (λ)Bα
V (λ) ,

B
α
V (λ)B

3α+β
V (λ)B2α+β

V (λ)B3α+2β
V (λ)Bα+β

V (λ)Bβ
V (λ) =

B
β
V (λ)B

α+β
V (λ)B3α+2β

V (λ)B2α+β
V (λ)B3α+β

V (λ)Bα
V (λ)

under the assumption that R〈α, β〉 = {±γ} where γ runs over all indices in the
corresponding identity.

VII.

Bw,W⊗V (λ)) = x−1
w (JWV (w(λ)− ρ+

1

2
(h(1) + h(2))))xw ·

(Bw,W (λ−
1

2
h(2))⊗ Bw,V (λ+

1

2
h(1))) J(λ− ρ+

1

2
(h(1) + h(2)))−1
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Lemma 16. Let W,V be finite dimensional g -modules, λ ∈ h , w ∈ W . Then

ΩBw,W⊗V (λ) = Bw,W⊗V (λ) Ω

and

(w−1(Ω−) + λ(2))Bw,W⊗V (λ) = Bw,W⊗V (λ)(Ω
− + λ(2)) .

Proof. The first equation holds since Ω commutes with the comultiplication. Now

Bw,W⊗V (λ) (Ω
− + λ(2)) = x−1

w (JWV (w(λ)− ρ+
1

2
(h(1) + h(2))))xw ·

(Bw,W (λ−
1

2
h(2))⊗ Bw,V (λ+

1

2
h(1))) JWV (λ− ρ+

1

2
(h(1) + h(2)))−1 (Ω− + λ(2)) =

x−1
w (JWV (w(λ)− ρ+

1

2
(h(1) + h(2))))xw ·

(Bw,W (λ−
1

2
h(2))⊗ Bw,V (λ+

1

2
h(1))) (Ω0 + λ(2)) JWV (λ− ρ+

1

2
(h(1) + h(2)))−1 =

x−1
w (JWV (w(λ)− ρ+

1

2
(h(1) + h(2))))xw (Ω0 + λ(2)) ·

(Bw,W (λ−
1

2
h(2))⊗ Bw,V (λ+

1

2
h(1))) JWV (λ− ρ+

1

2
(h(1) + h(2)))−1 =

x−1
w (JWV (w(λ)− ρ+

1

2
(h(1) + h(2)))) (Ω0 + (w(λ))(2)) xw ·

(Bw,W (λ−
1

2
h(2))⊗ Bw,V (λ+

1

2
h(1))) JWV (λ− ρ+

1

2
(h(1) + h(2)))−1 =

x−1
w (Ω− + (w(λ))(2))(JWV (w(λ)− ρ+

1

2
(h(1) + h(2)))) xw ·

(Bw,W (λ−
1

2
h(2))⊗ Bw,V (λ+

1

2
h(1))) JWV (λ− ρ+

1

2
(h(1) + h(2)))−1 =

(w−1(Ω−) + λ(2))x−1
w (JWV (w(λ)− ρ+

1

2
(h(1) + h(2)))) xw ·

(Bw,W (λ−
1

2
h(2))⊗ Bw,V (λ+

1

2
h(1))) JWV (λ− ρ+

1

2
(h(1) + h(2)))−1 =

(w−1(Ω−) + λ(2))Bw,W⊗V (λ) .

3. Difference Equations Compatible with KZ Equations for g = slN

3.1. Statement of Results. Let ei,j, i, j = 1, ...N , be the standard generators of the
Lie algebra glN ,

[ei,j , ek,l] = δj,k ei,l − δi,l ej,k .

slN is the Lie subalgebra of glN such that sln = n+ ⊕ h ⊕ n− where

n+ = ⊕1≤i<j≤NC ei,j , n− = ⊕1≤j<i≤NC ei,j ,
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and h = {λ =
∑N

i=1 λiei,i | λi ∈ C,
∑N

i=1 λi = 0}.
The invariant scalar product is defined by (ei,j, ek,l) = δi,lδj,k. The roots are ei,i − ej,j

for i 6= j. α∨ = α for any root. For a root α = ei,i − ej,j, we have Hα = ei,i − ej,j, Eα =
ei,j, Fα = ej,i. The simple roots are αi = ei,i − ei+1,i+1 for i = 1, ..., N − 1. W is
the symmetric group SN permutting coordinates of λ ∈ h . The (dual) fundamental

weights are ωi = ω∨
i =

∑i
j=1(1 − i

N
)ej,j −

∑N
j=i+1

i
N
ej,j for i = 1, ..., N − 1. All dual

fundamental weights are minuscule. For i = 1, ..., N − 1, the permutation w−1
[i] ∈ SN is

(

1
i+1

2
i+2

...

...
N−i
N

N−i+1
1

...

...
N
i

)

.
For any finite dimensional slN -module V and w ∈ SN consider the operators Bw,V (λ) :

V → V .
Let V = V1⊗ ...⊗Vn be a tensor product of finite dimensional slN -modules. For κ ∈ C

and λ ∈ h , consider the trigonometric KZ equations with values in V ,

∇j(λ, κ)u(z1, ..., zn, λ) = 0 , j = 1, ..., n .(9)

Here u(z1, ..., zn, λ) ∈ V is a function of complex variables z1, ..., zn and λ ∈ h .
Introduce the dynamical difference equations on a V -valued function u(z1, ..., zn, λ) as

(10)

u(z1, ..., zn, λ+ κω∨
i ) = Ki(z1, ..., zn, λ) u(z1, ..., zn, λ) , i = 1, ..., N − 1

where

Ki(z1, ..., zn, λ) =
n
∏

k=1

z
(ω∨

i )(k)

k Bw[i],V (λ) .

The operator
∏n

k=1 z
(ω∨

i )(k)

k is well defined if the argument of z1, ..., zn is fixed. The
dynamical difference equations are well defined on functions of (z, λ) where λ ∈ h and
z belongs to the universal cover of (C∗)n. Notice that the KZ equations are well defined
for V -valued functions of the same variables.

The KZ operators ∇j(λ, κ) and the operators Ki(z1, ..., zn, λ) preserve the weight
decomposition of V .

Theorem 17. The dynamical equations (10) together with the KZ equations (9) form
a compatible system of equations.

3.2. Proof. First prove that
n
∏

k=1

z
(ω∨

i )(k)

k Bw[i],V (λ)∇j(λ, κ) = ∇j(λ+ κω∨
i , κ)

n
∏

k=1

z
(ω∨

i )(k)

k Bw[i],V (λ)

for all i and j. Multiplying both sides from the left by
∏n

k=1 z
−(ω∨

i )(k)

k and using Lemma
3, we reduce the equation to

Bw[i],V (λ) (
∑

k, k 6=j

r(zj/zk)
(j,k) + λ(j) ) = (

∑

k, k 6=j

w−1
[i] (r(zj/zk))

(j,k) + λ(j) )Bw[i],V (λ) .
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Lemma 18. For j = 1, ..., n and w ∈ W , we have

Bw,V (λ) (
∑

k, k 6=j

r(zj/zk)
(j,k) + λ(j) ) = (

∑

k, k 6=j

w−1(r(zj/zk))
(j,k) + λ(j) )Bw,V (λ) .

Proof. It is sufficient to check the equation for the residues of both sides at zj = zk, k 6= j,
and for the limit of both sides as zj → ∞. The residue equation [Bw,V (λ),Ω

(j,k)] = 0 is
true since the Casimir operator commutes with the comultiplication. The limit equation

Bw,V (λ) (
∑

k, k 6=j

(Ω+)(j,k) + λ(j) ) = (
∑

k, k 6=j

w−1(Ω+)(j,k) + λ(j) )Bw[i],V (λ)

is a corollary of Lemma 16.

The Theorem is proved for slN , N = 2. For N > 2, it remains to prove that

Ki(z, λ+ κω∨
j )Kj(z, λ) = Kj(z, λ + κω∨

i )Ki(z, λ)(11)

for all i, j, 0 < i < j < N . We prove (11) for N = 3. For arbitrary N the proof is
similar. Another proof see in Section 4. For N = 3, i = 1, j = 2, equation (11) takes
the form

n
∏

k=1

z
(ω∨

1 )(k)

k B
α1+α2
V (λ+ κω∨

2 ) B
α1
V (λ+ κω∨

2 )

n
∏

k=1

z
(ω∨

2 )(k)

k B
α1+α2
V (λ) Bα2

V (λ) =(12)

n
∏

k=1

z
(ω∨

2 )(k)

k B
α1+α2
V (λ+ κω∨

1 ) B
α2
V (λ+ κω∨

1 )

n
∏

k=1

z
(ω∨

1 )(k)

k B
α1+α2
V (λ) Bα1

V (λ) .

We have B
α1
V (λ + κω∨

2 ) = B
α1
V (λ) since (ω∨

2 , α1) = 0. We have [Bα1
V (λ),

∏n

k=1 z
(ω∨

2 )(k)

k ] =
0 since B

α1
V (λ) is a power series in Eα1 , Fα1 . Similarly, Bα2

V (λ + κω∨
1 ) = B

α2
V (λ) and

[Bα2
V (λ),

∏n

k=1 z
(ω∨

1 )(k)

k ] = 0. Using these remarks and the relation

B
α2
V (λ)Bα1+α2

V (λ)Bα1
V (λ) = B

α1
V (λ)Bα1+α2

V (λ)Bα2
V (λ)

we reduce (12) to

n
∏

k=1

z
(ω∨

1 −ω∨
2 )

(k)

k B
α1+α2
V (λ+ κω∨

2 ) = B
α1+α2
V (λ+ κω∨

1 )

n
∏

k=1

z
(ω∨

1 −ω∨
2 )(k)

k .

This equation holds since B
α1+α2
V (λ+ κω∨

2 ) = B
α1+α2
V (λ+ κω∨

1 ), each of these operators
is a power series in Eα1+α2 , Fα1+α2 , and (ω∨

1 − ω∨
2 , α1 + α2) = 0.

3.3. An Equivalent Form of Dynamical Equations for slN . For j = 1, ..., N , set
δj = ω∨

j − ω∨
j−1 where ω∨

0 = ω∨
N = 0. Then the system of equations (10) is equivalent to
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the system

u(z1, ..., zn, λ+ κδi) =
(

B
ei−1,i−1−ei,i
V (λ+ κδi)

)−1

...
(

B
e1,1−ei,i
V (λ+ κδi)

)−1

×

n
∏

k=1

z
(δi)

(k)

k B
ei,i−en,n

V (λ)...B
ei,i−ei+1,i+1

V (λ)u(z1, ..., zn, λ)

where i = 1, ..., N .
Notice that the inverse powers can be eliminated using property III in Section 2.7.

3.4. Application to Determinants. Let g be a simple Lie algebra, V a finite dimen-
sional g -module, V [ν] a weight subspace. For a positive root α fix the sl2 subalgebra
in g generated by Hα, Eα, Fα. Consider V as an sl2-module. Let V [ν]α ⊂ V be the
sl2-submodule generated by V [ν],

V [ν]α = ⊕k∈Z≥0
W α

k ⊗ Lν+kα

the decomposition into irreducible sl2-modules. Here Lν+kα is the irreducible module
with highest weight ν + kα and W α

k the multiplicity space. Let dαk = dim W α
k . Set

Xα,V [ν](λ) =
∏

k∈Z≥0





k
∏

j=1

Γ
(

1−
(λ− 1

2
(ν+jα),α)

κ

)

Γ
(

1−
(λ+ 1

2
(ν+jα),α)

κ

)





dα
k

,

cf. formula (8). Here Γ is the standard gamma function.
Let V = V1⊗ ...⊗ Vn be a tensor product of finite dimensional g -modules. Set

Λk(λ) = trV [ν]λ
(k), ǫk,l = trV [ν]Ω

(k,l), γk =
∑

l, l 6=k εk,l. Set

DV [ν](z1, ..., zn, λ) =

n
∏

k=1

z
Λk(λ)

κ
−

γk
2κ

k

∏

1≤k<l≤n

(zk − zl)
ǫk,l

κ

∏

α∈Σ+

Xα,V [ν](λ) .(13)

Let g = slN , V = V1⊗ ...⊗Vn a tensor product of finite dimensional slN -modules. Fix
a basis v1, ..., vd in a weight subspace V [ν]. Suppose that ui(z1, ..., zn, λ) =

∑d

j=1 ui,jvj ,

i = 1, . . . , d, is a set of V [ν]-valued solutions of the combined system of KZ equations
(9) and dynamical equations (10).

Corollary 19.

det (ui,j)1≤i,j≤d = CV [ν](λ)DV [ν](z1, ..., zn, λ)

where CV [ν](λ) is a function of λ (depending also on V1, ..., Vn and ν) such that

CV [ν](λ+ κω) = CV [ν](λ)

for all ω ∈ P ∨.

Proof. The Corollary follows from the following simple Lemma.

Lemma 20. For i = 1, ..., N − 1, the operator Bw[i],V (λ) is the product in a suitable

order of all operators Bα
V (λ) with α ∈ Σ+ and (ω∨

i , α) > 0.
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Notice that Lemma 20 in particular implies that operators Bw[i],V (λ) and the dynam-
ical equations are well defined in the tensor product of any highest weight slN -modules.

4. Dynamical Difference Equations

In this section we introduce dynamical difference equations for arbitrary simple Lie
algebra. The compatibility of the dynamical equations follows from [Ch1]. We prove
the compatibility of dynamical and KZ equations.

4.1. Affine Root Systems, [Ch1, Ch2]. Let g be a simple Lie algebra. The vectors
α̃ = [α, j] ∈ h × R for α ∈ Σ, j ∈ Z form the affine root system Σa corresponding to
the root system Σ ⊂ h . We view Σ as a subset in Σa identifying α ∈ h with [α, 0].
The simple roots of Σa are α1, ..., αr ∈ Σ and α0 = [−θ, 1] where θ ∈ Σ is the maximal
root. The positive roots are Σa

+ = {[α, j] ∈ Σa |α ∈ Σ, j > 0 or α ∈ Σ+, j = 0}.
The Dynkin diagram and its affine completion with {αi}0≤i≤n as vertices are denoted
Γ and Γa, respectively. The set of the indices of the images of α0 with respect to all
authomorphisms of Γa is denoted O (O = {0} for E8, F4, G2 ). Let O

∗ = {i ∈ O | i 6= 0}.
For i = 1, ..., r, the dual fundamental weight ω∨

i is minuscule if and only if i ∈ O∗.
Given α̃ = [α, j] ∈ Σa and ω ∈ P ∨, set

sα̃(z̃) = z̃ − (z, α∨)α̃, tω(z̃) = [z, ξ − (z, ω)]

for z̃ = [z, ξ].
The affine Weyl group W

a is the group generated by reflections sα̃, α̃ ∈ Σa
+. One

defines the length of elements of W a taking the simple reflections si = sαi
, i = 0, ..., r,

as generators of W a. The group W
a is the semidirect product W ⋉Q∨

t of its subgroups
W = 〈sα |α ∈ Σ+〉 and Q∨

t = {tω |ω ∈ Q∨}, where for α ∈ Σ we have tα∨ = sαs[α,1] =
s[−α,1]sα.

Consider the group P ∨
t = {tω |ω ∈ P ∨}. The extended affine Weyl group W

b is the
group of transformations of h ×R generated by W and P ∨

t . W
b is isomorphic to W⋉P ∨

t

with action (w, ω)([z, ξ]) = [w(z), ξ − (z, ω)].
Notice that for any w ∈ W

b and α̃ ∈ Σa, we have w(α̃) ∈ Σa.
The extended affine Weyl group has a remarkable subgroup Π = {πi | i ∈ O}, where

π0 ∈ Π is the identity element in W
b and for i ∈ O∗ we have πi = tω∨

i
w−1

[i] . The group Π

is isomorphic to P ∨/Q∨ with the isomorphism sending πi to the minuscle weight ω∨
i . For

i ∈ O∗, the element w[i] preserves the set {−θ, α1, ..., αr} and πi(α0) = αi = w−1
[i] (−θ).

We have

W
b = Π⋉W

a, where πislπ
−1
i = sk if πi(αl) = αk and 0 ≤ k ≤ r .

We extend the notion of length to W
b. For i ∈ O∗, w ∈ W

a, we set the length of πiw
to be equal to the length of w in W

a.
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4.2. Affine R-matrices, [Ch1, Ch2]. Fix a C-algebra F . A set G = {Gα ∈ F |α ∈ Σ}
is called a closed R-matrix if

GαGβ = GβGα ,

GαGα+βGβ = GβGα+βGα ,

GαGα+βGα+2βGβ = GβGα+2βGα+βGα ,

GαG3α+βG2α+βG3α+2βGα+βGβ = GβGα+βG3α+2βG2α+βG3α+βGα

under the assumption that α, β ∈ Σ and R〈α, β〉 = {±γ} where γ runs over all indices
in the corresponding identity.

A set Ga = {G̃α̃ ∈ F | α̃ ∈ Σa} is called a closed affine R-matrix if G̃α̃ satisfy the same

relations where α, β are replaced with α̃, β̃.
If Ga is an affine R-matrix, for any w ∈ W

b define an element G̃w ∈ F as follows.
Given a reduced presentation w = πisjl...sj1, i ∈ O, 0 ≤ j1, ..., jl ≤ r, set G̃w = G̃α̃l

...G̃α̃1

where α̃1 = αj1 , α̃
2 = sj1(αj2), α̃

3 = sj1sj2(αj3),... The element G̃w does not depend on

the reduced presentation of w. We set G̃id = 1.
The unordered set {α̃1, ..., α̃l} is denoted Ã(w). There is a useful formula valid for

any (not necessarily minuscule) dual fundamental weight ω∨
i , i = 1, ..., r,

Ã(tω∨
i
) = {[α, j] |α ∈ Σ+, and (ω

∨
i , α) > j ≥ 0} ,(14)

Prop. 1.4 [Ch2].

Introduce the following formal notation: for w ∈ W
b, α̃, β̃ ∈ Σa, set w(G̃α̃) =

Gw(α̃), w(G̃α̃G̃β̃) = Gw(α̃)Gw(β̃),... Then the elements {G̃w |w ∈ W
b} form a 1-cocycle:

G̃xy =
y−1

G̃x G̃y

for all x, y ∈ W
b such that l(xy) = l(x) + l(y).

There is a way to construct a closed affine R-matrix if a closed nonaffine R-matrix
G = {Gα ∈ F |α ∈ Σ} is given. Namely, assume that the group P ∨

t acts on the
algebra F so that tω(Gα) = Gα whenever (ω, α) = 0, ω ∈ P ∨, α ∈ Σ. Then for
α̃ = [α, j] ∈ Σa, choose ω ∈ P ∨ so that (ω, α) = −j and set G̃α̃ = tω(Gα). The set

Ga = {G̃α̃ ∈ F | α̃ ∈ Σa} is well defined and forms a closed affine R-matrix called the
affine completion of the R-matrix G.

Assume that a closed affine R-matrix Ga is the affine completion of a closed nonaffine
R-matrix G. Consider the system of equations for an element Φ ∈ F :

t−ω∨
i (Φ) = G̃tω∨

i

Φ , i = 1, ..., r ,(15)

where ω∨
1 , ..., ω

∨
r are the dual fundamental weights.

Theorem 21. [Ch1] The system of equations (15) is compatible,

t−ω∨
i (G̃tω∨

j

) G̃tω∨
i

=
t−ω∨

j (G̃tω∨
i

) G̃tω∨
j

for 1 ≤ i < j ≤ r.
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Example, [Ch1]. Let α = α1, β = α2, a = −ω∨
1 , b = −ω∨

2 . Then the system for A2

is
ta(Φ) = G̃α+βG̃αΦ, tb(Φ) = G̃α+βG̃βΦ.

The system for B2 is
ta(Φ) = G̃α+2βG̃α+βG̃αΦ, tb(Φ) = G̃[α+2β,1]G̃α+βG̃α+2βG̃βΦ.

The system for G2 is
ta(Φ) = G̃[3α+2β,2]G̃[3α+β,2]G̃[2α+β,1]G̃[3α+2β,1]G̃[3α+β,1] ×

G̃α+βG̃3α+2βG̃2α+βG̃3α+βG̃αΦ,
tb(Φ) = G̃[3α+2β,1]G̃3α+βG̃2α+βG̃3α+2βG̃α+βG̃βΦ.

4.3. Affine R-matrix for Dynamical Equations. Fix κ ∈ C and a natural number
n. Let F be the algebra of meromorphic functions of z1, ..., zn ∈ C and λ ∈ h with
values in Ug⊗n

0 . Define an action of W on F by
wf(z1, ..., zn, λ) = w(f(z1, ..., zn, w

−1(λ)))

and an action of P ∨
t on F by

tωf(z1, ..., zn, λ) =

n
∏

k=1

zω
(k)

k f(z1, ..., zn, λ− κω)

n
∏

k=1

z−ω(k)

k

where w ∈ W , ω ∈ P ∨, f ∈ F .

Lemma 22. Those actions extend to an action of W b = W ⋉ P ∨
t on F , i.e. w(tωf) =

tw(ω)(wf) for w ∈ W , ω ∈ P ∨, f ∈ F . �

Define a closed nonaffine F -valued R-matrix GF = {Gα
F |α ∈ Σ} by

Gα
F (λ) = ∆(n)(p((λ, α∨)− 1;Hα, Eα, Fα)).

Properties of operators Bα
V described in Section 2.7 ensure that GF is a closed R-matrix.

The action of P ∨
t on F defined above clearly has the property: tω(Gα

F ) = Gα
F whenever

(ω, α) = 0, ω ∈ P ∨, α ∈ Σ. This allows us to define a closed affine R-matrixGa
F = {G̃α̃

F ∈
F | α̃ ∈ Σa} as the affine completion of the R-matrix GF . Namely, for α̃ = [α, j] ∈ Σa,
we choose ω ∈ P ∨ so that (ω, α) = −j and set

G̃
[α,j]
F (z1, ..., zn, λ) = tω(Gα

F ) =
n
∏

k=1

zω
(k)

k Gα
F (λ− κω)

n
∏

k=1

z−ω(k)

k .

Let V = V1⊗ ...⊗ Vn be a tensor product of finite dimensional g -modules. Let FV be
the algebra of meromorphic functions of z1, ..., zn ∈ C and λ ∈ h with values in
End (V ). The closed affine R-matrix Ga

F induces a closed affine R-matrix Ga
V = {G̃α̃

V }
where

G̃α̃
V (z1, ..., zn, λ) = G̃α̃

F (z1, ..., zn, λ+
1

2

n
∑

k=1

h(k))|V .
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In other words,

G̃
[α,j]
V (z1, ..., zn, λ) =

n
∏

k=1

zω
(k)

k B
α
V (λ− κω)

n
∏

k=1

z−ω(k)

k

where (ω, α) = −j and the operators B
α
V are defined in Section 2.7. For any w ∈ W

b

and α̃ ∈ Σa, we have w(G̃α̃
V ) = G̃

w(α̃)
V .

Let {G̃V
w ∈ FV |w ∈ W

b} be the 1-cocycle associated with the affine R-matrix Ga
V .

Consider the system
n
∏

k=1

z
−(ω∨

i )(k)

k Φ(z1, ..., zn, λ+ κω∨
i )

n
∏

k=1

z
(ω∨

i )(k)

k = G̃V
tω∨

i

(z1, ..., zn, λ)Φ(z1, ..., zn, λ) ,

i = 1, ..., r, of equations (15) associated with the affine R-matrix Ga
V . By Theorem 21

this system is compatible.
Example. For g = slN , this system of equations for an element Φ ∈ FV has the form

n
∏

k=1

z
−(ω∨

i )(k)

k Φ(z1, ..., zn, λ+ κω∨
i )

n
∏

k=1

z
(ω∨

i )(k)

k = Bw[i],V (λ)Φ(z1, ..., zn, λ) ,

i = 1, ..., N − 1, cf. (10).
Introduce the dynamical difference equations on a V -valued function u(z1, ..., zn, λ) as

(16)
n
∏

k=1

z
−(ω∨

i )(k)

k u(z1, ..., zn, λ+ κω∨
i ) = G̃V

tω∨
i

(z1, ..., zn, λ) u(z1, ..., zn, λ) ,

i = 1, ..., r. Notice that the operators G̃V
tω∨

i

preserve the weight decomposition of V .

Notice also that the operators G̃V
tω∨

i

are well defined on the tensor product of any highest

weight g -modules according to formula (14).
An easy corollary of the compatibility of system (15) is

Lemma 23. The dynamical difference equations (16) form a compatible system of equa-
tions for a V -valued function u(z1, ..., zn, λ).

In particular, for g = slN , the Lemma says that the system (10) is compatible.

Theorem 24. Assume that the Lie algebra g has a minuscle dual fundamental weight,
i.e. g is not of type E8, F4, G2. Then the dynamical equations (16) together with the KZ
equations (1) form a compatible system of equations.

The Theorem is proved in Section 4.4.
We conjecture that the statement of the Theorem holds for any simple Lie algebra.
Let g be a simple Lie algebra for which the KZ and dynamical equations are com-

patible. Let V = V1⊗ ...⊗ Vn be a tensor product of finite dimensional g -modules. Fix
a basis v1, ..., vd in a weight subspace V [ν]. Suppose that ui(z1, ..., zn, λ) =

∑d

j=1 ui,jvj ,
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i = 1, . . . , d, is a set of V [ν]-valued solutions of the combined system of KZ equations
(1) and dynamical equations (16).

Corollary 25.

det (ui,j)1≤i,j≤d = CV [ν](λ)DV [ν](z1, ..., zn, λ)

where CV [ν](λ) is a function of λ (depending also on V1, ..., Vn and ν) such that

CV [ν](λ+ κω) = CV [ν](λ)

for all ω ∈ P ∨ and DV [ν](z1, ..., zn, λ) is defined in (13).

The Corollary follows from formula (14).

4.4. Proof of Theorem 24. Introduce an action ofW b on the KZ operators∇j(λ, κ), j =
1, ..., n. Namely, for any w ∈ W , set

w∇j(λ, κ) = w(∇j(w
−1(λ), κ)) = κzj

∂

∂zj
−
∑

l, l 6=j

w(r(zj/zl))
(j,l) − λ(j)

and for any ω ∈ P ∨
t set

tω∇j(λ, κ) =
n
∏

k=1

zω
(k)

k ∇j(λ− κω, κ)
n
∏

k=1

z−ω(k)

k =

κzj
∂

∂zj
−

n
∏

k=1

z
ω
(k)
i

k

(

∑

l, l 6=j

r(zj/zl)
(j,l)

)

n
∏

k=1

z
−ω

(k)
i

k − λ(j) .

The compatibility conditions of the dynamical and KZ equations take the form

G̃V
tω∨

i

(z1, ..., zn, λ)∇j(λ, κ) =
t−ω∨

i ∇j(λ, κ) G̃
V
tω∨

i

(z1, ..., zn, λ)

for i = 1, ..., r, j = 1, ..., n.
The compatibility conditions follow from a more general statement.

Theorem 26. Assume that the Lie algebra g has a minuscle dual fundamental weight,
i.e. g is not of type E8, F4, G2. Then for any j = 1, ..., n and any w ∈ W

b we have

G̃V
w(z1, ..., zn, λ)∇j(λ, κ) = w−1

∇j(λ, κ) G̃
V
w(z1, ..., zn, λ).

We conjecture that the statement of the Theorem holds for any simple Lie algebra.
The Theorem follows from the next four Lemmas.

Lemma 27. Let j = 1, ..., n. Assume that

G̃V
sl
∇j(λ, κ) =

sl∇j(λ, κ)G̃
V
sl
, πi∇j(λ, κ) = ∇j(λ, κ)

for l = 0, ..., r and i ∈ O∗. Then

G̃V
w(z1, ..., zn, λ)∇j(λ, κ) = w−1

∇j(λ, κ) G̃
V
w(z1, ..., zn, λ)

for all w ∈ W
b.
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Proof. If w = πisml
...sm1 is a reduced presentation, then

G̃V
w = sm1 ...sml−1 (G̃V

sml
)...sm1 (G̃V

sm2
)G̃V

sm1
and

G̃V
w∇j(λ, κ) =

sm1 ...sml−1 (G̃V
sml

)...sm1 (G̃V
sm2

)G̃V
sm1

∇j(λ, κ) =

sm1 ...sml−1(G̃V
sml

)...sm1 (G̃V
sm2

)sm1∇j(λ, κ)G̃
V
sm1

=

sm1 ...sml−1 (G̃V
sml

)...sm1sm2∇j(λ, κ)
sm1 (G̃V

sm2
)G̃V

sm1
=

sm1sm2 ...sml∇j(λ, κ)
sm1 ...sml−1 (G̃V

sml
)...sm1 (G̃V

sm2
)G̃V

sm1
=

w−1

∇j(λ, κ)G̃
V
w .

Lemma 28. Let j = 1, ..., n and w ∈ W . Then

G̃V
w∇j(λ, κ) =

w−1

∇j(λ, κ)G̃
V
w .

Proof. For w ∈ W we have G̃V
w(z1, ..., znλ) = Bw,V (λ), and Lemma 28 is equivalent to

Lemma 18.

Lemma 29. Let j = 1, ..., n and i ∈ O∗. Then
πi∇j(λ, κ) = ∇j(λ, κ).

Proof. We have πi = tω∨
i
w−1

[i] . Hence

πi∇j(λ, κ) =
tω∨

i (
w−1

[i] ∇j(λ, κ)) =
tω∨

i (κzj
∂

∂zj
−
∑

l, l 6=j

w−1
[i] (r(zj/zl))

(j,l) − λ(j)) =

κzj
∂

∂zj
−

n
∏

k=1

z
(ω∨

i )(k)

k

(

∑

l, l 6=j

w−1
[i] (r(zj/zl))

(j,l)

)

n
∏

k=1

z
−(ω∨

i )(k)

k − λ(j) = ∇j(λ, κ) .

The last equality follows from Lemma 3.

Lemma 30. Let j = 1, ..., n. Assume that the Lie algebra g has a minuscle dual fun-
damental weight. Then

G̃V
s0
∇j(λ, κ) =

s0∇j(λ, κ)G̃
V
s0
.

Proof. Let ω∨
i be a minuscle dual fundamental weight. We have s0 = π−1

i siπi and

G̃V
s0
= π−1

i (G̃V
si
) according to the 1-cocycle property. Now

s0∇j(λ, κ)G̃
V
s0
= π−1

i siπi∇j(λ, κ)
π−1
i (G̃V

si
) = π−1

i (si(πi∇j(λ, κ))G̃
V
si
) =

π−1
i (si(∇j(λ, κ))G̃

V
si
) = π−1

i (G̃V
si
∇j(λ, κ)) =

π−1
i (G̃V

si
)π

−1
i (∇j(λ, κ)) = G̃V

s0
∇j(λ, κ) .

Theorems 24 and 26 are proved.
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