419 research outputs found

    Diameter 2 Cayley graphs of dihedral groups

    Get PDF
    We consider the degree-diameter problem for Cayley graphs of dihedral groups. We find upper and lower bounds on the maximum number of vertices of such a graph with diameter 2 and degree d. We completely determine the asymptotic behaviour of this class of graphs by showing that both limits are asymptotically d2/2

    Distance-regular Cayley graphs with small valency

    Full text link
    We consider the problem of which distance-regular graphs with small valency are Cayley graphs. We determine the distance-regular Cayley graphs with valency at most 44, the Cayley graphs among the distance-regular graphs with known putative intersection arrays for valency 55, and the Cayley graphs among all distance-regular graphs with girth 33 and valency 66 or 77. We obtain that the incidence graphs of Desarguesian affine planes minus a parallel class of lines are Cayley graphs. We show that the incidence graphs of the known generalized hexagons are not Cayley graphs, and neither are some other distance-regular graphs that come from small generalized quadrangles or hexagons. Among some ``exceptional'' distance-regular graphs with small valency, we find that the Armanios-Wells graph and the Klein graph are Cayley graphs.Comment: 19 pages, 4 table

    Large Networks of Diameter Two Based on Cayley Graphs

    Full text link
    In this contribution we present a construction of large networks of diameter two and of order 12d2\frac{1}{2}d^2 for every degree d8d\geq 8, based on Cayley graphs with surprisingly simple underlying groups. For several small degrees we construct Cayley graphs of diameter two and of order greater than 23\frac23 of Moore bound and we show that Cayley graphs of degrees d{16,17,18,23,24,31,,35}d\in\{16,17,18,23,24,31,\dots,35\} constructed in this paper are the largest currently known vertex-transitive graphs of diameter two.Comment: 9 pages, Published in Cybernetics and Mathematics Applications in Intelligent System
    corecore