337,769 research outputs found

    The nature of representation in Feynman diagrams

    Get PDF
    After a brief presentation of Feynman diagrams, we criticizise the idea that Feynman diagrams can be considered to be pictures or depictions of actual physical processes. We then show that the best interpretation of the role they play in quantum field theory and quantum electrodynamics is captured by Hughes' Denotation, Deduction and Interpretation theory of models (DDI), where models are to be interpreted as inferential, non-representational devices constructed in given social contexts by the community of physicists

    Feynman's Diagrams, Pictorial Representations and Styles of Scientific Thinking

    Get PDF
    In this paper we argue that the different positions taken by Dyson and Feynman on Feynman diagrams’ representational role depend on different styles of scientific thinking. We begin by criticizing the idea that Feynman Diagrams can be considered to be pictures or depictions of actual physical processes. We then show that the best interpretation of the role they play in quantum field theory and quantum electrodynamics is captured by Hughes' Denotation, Deduction and Interpretation theory of models (DDI), where “models” are to be interpreted as inferential, non-representational devices constructed in given social contexts by the community of physicists

    Dusty, Radiation Pressure Dominated Photoionization. II. Multi-Wavelength Emission Line Diagnostics for Narrow Line Regions

    Full text link
    Seyfert narrow line region (NLR) emission line ratios are remarkably uniform, displaying only ~0.5 dex variation between galaxies, and even less within an individual object. Previous photoionization and shock models of this region were unable to explain this observation without the introduction of arbitrary assumptions or additional parameters. Dusty, radiation pressure dominated photoionization models provide a simple physical mechanism which can reproduce this spectral uniformity between different objects. In the first paper of this series we described this model and its implementation in detail, as well as presenting grids of model emission lines and examining the model structures. Here we explore these models further, demonstrating their ability to reproduce the observed Seyfert line ratios on standard line diagnostic diagrams in both the optical and UV. We also investigate the effects that the variation of metallicity, density and ionizing spectrum have upon both the new paradigm and the standard photoionization models used hitherto. Along with the standard diagnostic diagrams we provide several new diagnostic diagrams in the UV, Optical and IR. These new diagrams can provide further tests of the dusty, radiation pressure photoionization paradigm as well as being used as diagnostics of the metallicity, density and ionizing spectrum of the emission line clouds.Comment: Accepted by ApJS, full pdf including figures can be obtained at http://www.mso.anu.edu.au/~bgroves/Papers/ApJS2.pd

    Perturbative unitarity of Lee-Wick quantum field theory

    Full text link
    We study the perturbative unitarity of the Lee-Wick models, formulated as nonanalytically Wick rotated Euclidean theories. The complex energy plane is divided into disconnected regions and the values of a loop integral in the various regions are related to one another by a nonanalytic procedure. We show that the one-loop diagrams satisfy the expected, unitary cutting equations in each region: only the physical degrees of freedom propagate through the cuts. The goal can be achieved by working in suitable subsets of each region and proving that the cutting equations can be analytically continued as a whole. We make explicit calculations in the cases of the bubble and triangle diagrams and address the generality of our approach. We also show that the same higher-derivative models violate unitarity if they are formulated directly in Minkowski spacetime.Comment: 30 pages, 15 figures; v2: more details and comments on generality of approach; v3: minor changes, PR

    A new formulation of Lee-Wick quantum field theory

    Get PDF
    The Lee-Wick models are higher-derivative theories that are claimed to be unitary thanks to a peculiar cancelation mechanism. In this paper, we provide a new formulation of the models, to clarify several aspects that have remained quite mysterious, so far. Specifically, we define them as nonanalytically Wick rotated Euclidean theories. The complex energy plane is divided into disconnected regions, which can be related to one another by a well-defined, albeit nonanalytic procedure. Working in a generic Lorentz frame, the models are intrinsically equipped with the right recipe to treat the pinchings of the Lee-Wick poles, with no need of external ad hoc prescriptions. We describe these features in detail by calculating the one-loop bubble diagram and explaining how the key properties generalize to more complicated diagrams. The physical results of our formulation are different from those of the previous ones. The unusual behaviors of the physical amplitudes lead to interesting phenomenological predictions.Comment: 27 pages, 17 figures; v2: details about Lorentz invariance above LW thresholds; v3: minor changes, JHE

    Thermodynamic limit of random partitions and dispersionless Toda hierarchy

    Full text link
    We study the thermodynamic limit of random partition models for the instanton sum of 4D and 5D supersymmetric U(1) gauge theories deformed by some physical observables. The physical observables correspond to external potentials in the statistical model. The partition function is reformulated in terms of the density function of Maya diagrams. The thermodynamic limit is governed by a limit shape of Young diagrams associated with dominant terms in the partition function. The limit shape is characterized by a variational problem, which is further converted to a scalar-valued Riemann-Hilbert problem. This Riemann-Hilbert problem is solved with the aid of a complex curve, which may be thought of as the Seiberg-Witten curve of the deformed U(1) gauge theory. This solution of the Riemann-Hilbert problem is identified with a special solution of the dispersionless Toda hierarchy that satisfies a pair of generalized string equations. The generalized string equations for the 5D gauge theory are shown to be related to hidden symmetries of the statistical model. The prepotential and the Seiberg-Witten differential are also considered.Comment: latex2e using amsmath,amssymb,amsthm packages, 55 pages, no figure; (v2) typos correcte

    The Derivation of the Exact Internal Energies for Spin Glass Models by Applying the Gauge Theory to the Fortuin-Kasteleyn Representation

    Full text link
    We derive the exact internal energies and the rigorous upper bounds of specific heats for several spin glass models by applying the gauge theory to the Fortuin-Kasteleyn representation which is a representation based on a percolation picture for spin-spin correlation. The results are derived on the Nishimori lines which are special lines on the phase diagrams. As the spin glass models, the +-J Ising model and a Potts gauge glass model are studied. The present solutions agree with the previous solutions. The derivation of the solutions by the present method must be useful for understanding the relationship between the percolation picture for spin-spin correlation and the physical quantities on the Nishimori line.Comment: 10 pages, no figures. v3: minor corrections/addition

    Marshall system for aerospace system simulation (MARSYAS), user's manual

    Get PDF
    The capabilities of the Marshall system for aerospace system simulation (MARSYAS) and how to use it are described. MARSYAS is a software system that allows easy setup and control of the simulation of the dynamics of large physical systems on a digital computer. The physical systems are modeled in the form of block diagrams or equations. The blocks can have multiple inputs and multiple outputs, and they can be nested to form hierarchies. The block diagrams can contain transfer functions, nonlinear and logical functions, equations, analog computer elements and FORTRAN programs. The input format of the equations can be combinations of nonlinear, time-varying differential equations and algebraic equations in their original format. MARSYAS could also serve as a storage and retrieval system for models as a basis for a model configuration control system on a central time-shared computer. The outputs of the simulation system can be not only time-responses but also other analysis data such as frequency response, power spectrum and stability parameters. The MARSYAS translator is written in FORTRAN running on the Univac 1108 computer under the EXEC 8 operating system

    Theoretical Zero Age Main Sequences revisited

    Full text link
    Zero Age Main Sequence (ZAMS) models with updated physical inputs are presented for selected assumptions about the chemical composition, covering the ranges 0.6 < M/Mo < 1.2, 0.0001 < Z < 0.04, 0.23 < Y < 0.34.The HR diagram location of the ZAMS as a function of Y and Z is discussed both in the theoretical and in the observational HR diagrams, showing that the V magnitude presents an increased dependence on Z to be taken into account when discussing observational evidences. Analytical relations quantifying both these dependences are derived. Implications for the galactic helium to heavier elements enrichment are finally discussed.Comment: 4 pages, 4 postscript figures, accepted for publication on Astronomy & Astrophysic
    • …
    corecore