14,962 research outputs found

    Diagrammatic Inference

    Full text link
    Diagrammatic logics were introduced in 2002, with emphasis on the notions of specifications and models. In this paper we improve the description of the inference process, which is seen as a Yoneda functor on a bicategory of fractions. A diagrammatic logic is defined from a morphism of limit sketches (called a propagator) which gives rise to an adjunction, which in turn determines a bicategory of fractions. The propagator, the adjunction and the bicategory provide respectively the syntax, the models and the inference process for the logic. Then diagrammatic logics and their morphisms are applied to the semantics of side effects in computer languages.Comment: 16 page

    Automation of Diagrammatic Proofs in Mathematics

    Get PDF
    Theorems in automated theorem proving are usually proved by logical formal proofs. However, there is a subset of problems which can also be proved in a more informal way by the use of geometric operations on diagrams, so called diagrammatic proofs. Insight is more clearly perceived in these than in the corresponding logical proofs: they capture an intuitive notion of truthfulness that humans find easy to see and understand. The proposed research project is to identify and ultimately automate this diagrammatic reasoning on mathematical theorems. The system that we are in the process of implementing will be given a theorem and will (initially) interactively prove it by the use of geometric manipulations on the diagram that the user chooses to be the appropriate ones. These operations will be the inference steps of the proof. The constructive !-rule will be used as a tool to capture the generality of diagrammatic proofs. In this way, we hope to verify and to show that the diagra..

    Active Inference in String Diagrams: A Categorical Account of Predictive Processing and Free Energy

    Full text link
    We present a categorical formulation of the cognitive frameworks of Predictive Processing and Active Inference, expressed in terms of string diagrams interpreted in a monoidal category with copying and discarding. This includes diagrammatic accounts of generative models, Bayesian updating, perception, planning, active inference, and free energy. In particular we present a diagrammatic derivation of the formula for active inference via free energy minimisation, and establish a compositionality property for free energy, allowing free energy to be applied at all levels of an agent's generative model. Aside from aiming to provide a helpful graphical language for those familiar with active inference, we conversely hope that this article may provide a concise formulation and introduction to the framework

    Accessible reasoning with diagrams: From cognition to automation

    Get PDF
    High-tech systems are ubiquitous and often safety and se- curity critical: reasoning about their correctness is paramount. Thus, precise modelling and formal reasoning are necessary in order to convey knowledge unambiguously and accurately. Whilst mathematical mod- elling adds great rigour, it is opaque to many stakeholders which leads to errors in data handling, delays in product release, for example. This is a major motivation for the development of diagrammatic approaches to formalisation and reasoning about models of knowledge. In this paper, we present an interactive theorem prover, called iCon, for a highly expressive diagrammatic logic that is capable of modelling OWL 2 ontologies and, thus, has practical relevance. Significantly, this work is the first to design diagrammatic inference rules using insights into what humans find accessible. Specifically, we conducted an experiment about relative cognitive benefits of primitive (small step) and derived (big step) inferences, and use the results to guide the implementation of inference rules in iCon

    How to combine diagrammatic logics

    Full text link
    This paper is a submission to the contest: How to combine logics? at the World Congress and School on Universal Logic III, 2010. We claim that combining "things", whatever these things are, is made easier if these things can be seen as the objects of a category. We define the category of diagrammatic logics, so that categorical constructions can be used for combining diagrammatic logics. As an example, a combination of logics using an opfibration is presented, in order to study computational side-effects due to the evolution of the state during the execution of an imperative program

    Adjunctions for exceptions

    Full text link
    An algebraic method is used to study the semantics of exceptions in computer languages. The exceptions form a computational effect, in the sense that there is an apparent mismatch between the syntax of exceptions and their intended semantics. We solve this apparent contradiction by efining a logic for exceptions with a proof system which is close to their syntax and where their intended semantics can be seen as a model. This requires a robust framework for logics and their morphisms, which is provided by categorical tools relying on adjunctions, fractions and limit sketches.Comment: In this Version 2, minor improvements are made to Version

    Picturing classical and quantum Bayesian inference

    Full text link
    We introduce a graphical framework for Bayesian inference that is sufficiently general to accommodate not just the standard case but also recent proposals for a theory of quantum Bayesian inference wherein one considers density operators rather than probability distributions as representative of degrees of belief. The diagrammatic framework is stated in the graphical language of symmetric monoidal categories and of compact structures and Frobenius structures therein, in which Bayesian inversion boils down to transposition with respect to an appropriate compact structure. We characterize classical Bayesian inference in terms of a graphical property and demonstrate that our approach eliminates some purely conventional elements that appear in common representations thereof, such as whether degrees of belief are represented by probabilities or entropic quantities. We also introduce a quantum-like calculus wherein the Frobenius structure is noncommutative and show that it can accommodate Leifer's calculus of `conditional density operators'. The notion of conditional independence is also generalized to our graphical setting and we make some preliminary connections to the theory of Bayesian networks. Finally, we demonstrate how to construct a graphical Bayesian calculus within any dagger compact category.Comment: 38 pages, lots of picture
    • …
    corecore