2 research outputs found

    Diagnostically lossless coding of X-ray angiography images based on background suppression

    Get PDF
    X-ray angiography images are widely used to identify irregularities in the vascular system. Because of their high spatial resolution and the large amount of images generated daily, coding of X-ray angiography images is becoming essential. This paper proposes a diagnostically lossless coding method based on automatic segmentation of the focal area using ray-casting and α-shapes. The diagnostically relevant Region of Interest is first identified by exploiting the inherent symmetrical features of the image. The background is then suppressed and the resulting images are encoded using lossless and progressive lossy-to-lossless methods, including JPEG-LS, JPEG2000, H.264 and HEVC. Experiments on a large set of X-ray angiography images suggest that our method correctly identifies the Region of Interest. When compared to the case of coding with no background suppression, the method achieves average bit-stream reductions of nearly 34% and improvements on the reconstruction quality of up to 20 dB-SNR for progressive decoding

    A novel method for determining the Femoral-Tibial Angle of Knee Osteoarthritis on X-ray radiographs:data from the Osteoarthritis Initiative

    Get PDF
    Femoral-tibial alignment is a prominent risk factor for Knee Osteoarthritis (KOA) incidence and progression. One way of assessing alignment is by determining the Femoral-Tibial Angle (FTA). Several studies have investigated FTA determination; however, methods of assessment of FTA still present challenges. This paper introduces a new method for semi-automatic measurement of FTA as part of KOA research. Our novel approach combines preprocessing of X-ray images and the use of Active Shape Model (ASM) as the femoral and tibial segmentation method, followed by a thinning process. The result of the thinning process is used to predict FTA automatically by measuring the angle between the intersection of the two vectors of branching points on the femoral and tibial areas. The proposed method is trained on 10 x-ray images and tested on 50 different x-ray images of the Osteoarthritis Initiative (OAI) dataset. The outcomes of this approach were compared with manually obtained FTA measurements from the OAI dataset as the ground truth. Based on experiments, the difference in measurement results between the FTA of the OAI and the FTA obtained using our method is quite small, i.e., below 0.81 for the right FTA and below 0.77 for the left FTA with minimal average errors. This result indicates that this method is clinically suitable for semi-automatic measurement of the FTA. Computer science; Medical imaging; Knee osteoarthritis; X-ray; Femoral-tibial angle; Active shape mode
    corecore