5 research outputs found

    A Study on Device To Device Communication in Wireless Mobile Network

    Full text link
    Volume 3 Issue 3 (March 2015

    Zero-Outage Cellular Downlink with Fixed-Rate D2D Underlay

    Full text link
    Two of the emerging trends in wireless cellular systems are Device-to-Device (D2D) and Machine-to-Machine (M2M) communications. D2D enables efficient reuse of the licensed spectrum to support localized transmissions, while M2M connections are often characterized by fixed and low transmission rates. D2D connections can be instrumental in localized aggregation of uplink M2M traffic to a more capable cellular device, before being finally delivered to the Base Station (BS). In this paper we show that a fixed M2M rate is an enabler of efficient Machine-Type D2D underlay operation taking place simultaneously with another \emph{downlink} cellular transmission. In the considered scenario, a BS BB transmits to a user UU, while there are NMN_M Machine-Type Devices (MTDs) attached to UU, all sending simultaneously to UU and each using the same rate RMR_M. While assuming that BB knows the channel B−UB-U, but not the interfering channels from the MTDs to UU, we prove that there is a positive downlink rate that can always be decoded by UU, leading to zero-outage of the downlink signal. This is a rather surprising consequence of the features of the multiple access channel and the fixed rate RMR_M. We also consider the case of a simpler, single-user decoder at UU with successive interference cancellation. However, with single-user decoder, a positive zero-outage rate exists only when NM=1N_M=1 and is zero when NM>1N_M>1. This implies that joint decoding is instrumental in enabling fixed-rate underlay operation.Comment: Revised versio

    Comnet: Annual Report 2012

    Get PDF

    Device-to-Device underlay cellular network based on rate splitting

    No full text

    An adaptive social-aware device-to-device communication mechanism for wireless networks

    Get PDF
    Device-to-Device (D2D) communication is an essential element in 5G networks, which enables users to communicate either directly without network assistance or with minimum signaling through a base station. For an effective D2D communication, related problems in mode and peer selection need to be addressed. In mode selection, the problem is how to guarantee selection always chooses the best available mode. In peer selection, the problem is how to select optimum peers among surrounding peers in terms of connection conditions and social relationships between peers. The main objectives of this research are to identify mode selection between devices and establishing a connection with the best D2D pair connection without privacy leakage. Multi-Attribute Decision Making and Social Choice theories are applied to achieve the objectives. Mode selection scheme is based on Received Signal Strength (RSS), delay and bandwidth attributes to choose and switch among the available modes intelligently based on the highest ranking. Then, the peering selection scheme is proposed using RSS, delay, bandwidth and power attribute to find an optimum peer with concerning social relationship, by evaluating trust level between peers and excluding the untrusted peers from ranking which will increase the optimum quality of D2D connection. The proposed schemes are validated and tested using MATLAB. Two main scenarios, namely crowded network and user speed were considered to evaluate the proposed mechanism with three existing approaches where the selection is based on a single attribute. The obtained results showed that the proposed mechanism outperforms other approaches in terms of delay, signal to noise ratio, delivery ratio and throughput with better performance up to 70%. The proposed mechanism provides a smooth switching between different modes and employs an automatic peering selection with trusted peers only. It can be applied in different types of network that serves the massive number of users with different movement speed of the user
    corecore