3,923 research outputs found

    Fuzzy-logic-based control, filtering, and fault detection for networked systems: A Survey

    Get PDF
    This paper is concerned with the overview of the recent progress in fuzzy-logic-based filtering, control, and fault detection problems. First, the network technologies are introduced, the networked control systems are categorized from the aspects of fieldbuses and industrial Ethernets, the necessity of utilizing the fuzzy logic is justified, and the network-induced phenomena are discussed. Then, the fuzzy logic control strategies are reviewed in great detail. Special attention is given to the thorough examination on the latest results for fuzzy PID control, fuzzy adaptive control, and fuzzy tracking control problems. Furthermore, recent advances on the fuzzy-logic-based filtering and fault detection problems are reviewed. Finally, conclusions are given and some possible future research directions are pointed out, for example, topics on two-dimensional networked systems, wireless networked control systems, Quality-of-Service (QoS) of networked systems, and fuzzy access control in open networked systems.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374039, 61473163, and 61374127, the Hujiang Foundation of China under Grants C14002 andD15009, the Engineering and Physical Sciences Research Council (EPSRC) of the UK, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    A survey of fuzzy control for stabilized platforms

    Full text link
    This paper focusses on the application of fuzzy control techniques (fuzzy type-1 and type-2) and their hybrid forms (Hybrid adaptive fuzzy controller and fuzzy-PID controller) in the area of stabilized platforms. It represents an attempt to cover the basic principles and concepts of fuzzy control in stabilization and position control, with an outline of a number of recent applications used in advanced control of stabilized platform. Overall, in this survey we will make some comparisons with the classical control techniques such us PID control to demonstrate the advantages and disadvantages of the application of fuzzy control techniques

    A survey on gain-scheduled control and filtering for parameter-varying systems

    Get PDF
    Copyright © 2014 Guoliang Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.This paper presents an overview of the recent developments in the gain-scheduled control and filtering problems for the parameter-varying systems. First of all, we recall several important algorithms suitable for gain-scheduling method including gain-scheduled proportional-integral derivative (PID) control, H 2, H ∞ and mixed H 2 / H ∞ gain-scheduling methods as well as fuzzy gain-scheduling techniques. Secondly, various important parameter-varying system models are reviewed, for which gain-scheduled control and filtering issues are usually dealt with. In particular, in view of the randomly occurring phenomena with time-varying probability distributions, some results of our recent work based on the probability-dependent gain-scheduling methods are reviewed. Furthermore, some latest progress in this area is discussed. Finally, conclusions are drawn and several potential future research directions are outlined.The National Natural Science Foundation of China under Grants 61074016, 61374039, 61304010, and 61329301; the Natural Science Foundation of Jiangsu Province of China under Grant BK20130766; the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning; the Program for New Century Excellent Talents in University under Grant NCET-11-1051, the Leverhulme Trust of the U.K., the Alexander von Humboldt Foundation of Germany

    Development of c-means Clustering Based Adaptive Fuzzy Controller for A Flapping Wing Micro Air Vehicle

    Full text link
    Advanced and accurate modelling of a Flapping Wing Micro Air Vehicle (FW MAV) and its control is one of the recent research topics related to the field of autonomous Unmanned Aerial Vehicles (UAVs). In this work, a four wing Natureinspired (NI) FW MAV is modeled and controlled inspiring by its advanced features like quick flight, vertical take-off and landing, hovering, and fast turn, and enhanced manoeuvrability when contrasted with comparable-sized fixed and rotary wing UAVs. The Fuzzy C-Means (FCM) clustering algorithm is utilized to demonstrate the NIFW MAV model, which has points of interest over first principle based modelling since it does not depend on the system dynamics, rather based on data and can incorporate various uncertainties like sensor error. The same clustering strategy is used to develop an adaptive fuzzy controller. The controller is then utilized to control the altitude of the NIFW MAV, that can adapt with environmental disturbances by tuning the antecedent and consequent parameters of the fuzzy system.Comment: this paper is currently under review in Journal of Artificial Intelligence and Soft Computing Researc

    PID control system analysis, design, and technology

    Get PDF
    Designing and tuning a proportional-integral-derivative (PID) controller appears to be conceptually intuitive, but can be hard in practice, if multiple (and often conflicting) objectives such as short transient and high stability are to be achieved. Usually, initial designs obtained by all means need to be adjusted repeatedly through computer simulations until the closed-loop system performs or compromises as desired. This stimulates the development of "intelligent" tools that can assist engineers to achieve the best overall PID control for the entire operating envelope. This development has further led to the incorporation of some advanced tuning algorithms into PID hardware modules. Corresponding to these developments, this paper presents a modern overview of functionalities and tuning methods in patents, software packages and commercial hardware modules. It is seen that many PID variants have been developed in order to improve transient performance, but standardising and modularising PID control are desired, although challenging. The inclusion of system identification and "intelligent" techniques in software based PID systems helps automate the entire design and tuning process to a useful degree. This should also assist future development of "plug-and-play" PID controllers that are widely applicable and can be set up easily and operate optimally for enhanced productivity, improved quality and reduced maintenance requirements

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    A model-free control strategy for an experimental greenhouse with an application to fault accommodation

    Full text link
    Writing down mathematical models of agricultural greenhouses and regulating them via advanced controllers are challenging tasks since strong perturbations, like meteorological variations, have to be taken into account. This is why we are developing here a new model-free control approach and the corresponding intelligent controllers, where the need of a good model disappears. This setting, which has been introduced quite recently and is easy to implement, is already successful in many engineering domains. Tests on a concrete greenhouse and comparisons with Boolean controllers are reported. They not only demonstrate an excellent climate control, where the reference may be modified in a straightforward way, but also an efficient fault accommodation with respect to the actuators

    Optimum PID Control of Multi-wing Attractors in A Family of Lorenz-like Chaotic Systems

    Full text link
    Multi-wing chaotic attractors are highly complex nonlinear dynamical systems with higher number of index-2 equilibrium points. Due to the presence of several equilibrium points, randomness of the state time series for these multi-wing chaotic systems is higher than that of the conventional double wing chaotic attractors. A real coded Genetic Algorithm (GA) based global optimization framework has been presented in this paper, to design optimum PID controllers so as to control the state trajectories of three different multi-wing Lorenz like chaotic systems viz. Lu, Rucklidge and Sprott-1 system.Comment: 6 pages, 21 figures; 2012 Third International Conference on Computing, Communication and Networking Technologies (ICCCNT'12), July 2012, Coimbator
    corecore