747 research outputs found

    Towards Autonomous Aviation Operations: What Can We Learn from Other Areas of Automation?

    Get PDF
    Rapid advances in automation has disrupted and transformed several industries in the past 25 years. Automation has evolved from regulation and control of simple systems like controlling the temperature in a room to the autonomous control of complex systems involving network of systems. The reason for automation varies from industry to industry depending on the complexity and benefits resulting from increased levels of automation. Automation may be needed to either reduce costs or deal with hazardous environment or make real-time decisions without the availability of humans. Space autonomy, Internet, robotic vehicles, intelligent systems, wireless networks and power systems provide successful examples of various levels of automation. NASA is conducting research in autonomy and developing plans to increase the levels of automation in aviation operations. This paper provides a brief review of levels of automation, previous efforts to increase levels of automation in aviation operations and current level of automation in the various tasks involved in aviation operations. It develops a methodology to assess the research and development in modeling, sensing and actuation needed to advance the level of automation and the benefits associated with higher levels of automation. Section II describes provides an overview of automation and previous attempts at automation in aviation. Section III provides the role of automation and lessons learned in Space Autonomy. Section IV describes the success of automation in Intelligent Transportation Systems. Section V provides a comparison between the development of automation in other areas and the needs of aviation. Section VI provides an approach to achieve increased automation in aviation operations based on the progress in other areas. The final paper will provide a detailed analysis of the benefits of increased automation for the Traffic Flow Management (TFM) function in aviation operations

    Developments and Challenges for Autonomous Unmanned Vehicles

    Full text link

    Internet of Drones (IoD): Threats, Vulnerability, and Security Perspectives

    Full text link
    The development of the Internet of Drones (IoD) becomes vital because of a proliferation of drone-based civilian or military applications. The IoD based technological revolution upgrades the current Internet environment into a more pervasive and ubiquitous world. IoD is capable of enhancing the state-of-the-art for drones while leveraging services from the existing cellular networks. Irrespective to a vast domain and range of applications, IoD is vulnerable to malicious attacks over open-air radio space. Due to increasing threats and attacks, there has been a lot of attention on deploying security measures for IoD networks. In this paper, critical threats and vulnerabilities of IoD are presented. Moreover, taxonomy is created to classify attacks based on the threats and vulnerabilities associated with the networking of drone and their incorporation in the existing cellular setups. In addition, this article summarizes the challenges and research directions to be followed for the security of IoD.Comment: 13 pages, 3 Figures, 1 Table, The 3rd International Symposium on Mobile Internet Security (MobiSec'18), Auguest 29-September 1, 2018, Cebu, Philippines, Article No. 37, pp. 1-1

    Autonomous Weapon Systems: A Brief Survey of Developmental, Operational, Legal, and Ethical Issues

    Get PDF
    What does the Department of Defense hope to gain from the use of autonomous weapon systems (AWS)? This Letort Paper explores a diverse set of complex issues related to the developmental, operational, legal, and ethical aspects of AWS. It explores the recent history of the development and integration of autonomous and semi-autonomous systems into traditional military operations. It examines anticipated expansion of these roles in the near future as well as outlines international efforts to provide a context for the use of the systems by the United States. As these topics are well-documented in many sources, this Paper serves as a primer for current and future AWS operations to provide senior policymakers, decisionmakers, military leaders, and their respective staffs an overall appreciation of existing capabilities and the challenges, opportunities, and risks associated with the use of AWS across the range of military operations. Emphasis is added to missions and systems that include the use of deadly force.https://press.armywarcollege.edu/monographs/1303/thumbnail.jp

    Arctic Domain Awareness Center DHS Center of Excellence (COE): Project Work Plan

    Get PDF
    As stated by the DHS Science &Technology Directorate, “The increased and diversified use of maritime spaces in the Arctic - including oil and gas exploration, commercial activities, mineral speculation, and recreational activities (tourism) - is generating new challenges and risks for the U.S. Coast Guard and other DHS maritime missions.” Therefore, DHS will look towards the new ADAC for research to identify better ways to create transparency in the maritime domain along coastal regions and inland waterways, while integrating information and intelligence among stakeholders. DHS expects the ADAC to develop new ideas to address these challenges, provide a scientific basis, and develop new approaches for U.S. Coast Guard and other DHS maritime missions. ADAC will also contribute towards the education of both university students and mid-career professionals engaged in maritime security. The US is an Arctic nation, and the Arctic environment is dynamic. We have less multi-year ice and more open water during the summer causing coastal villages to experience unprecedented storm surges and coastal erosion. Decreasing sea ice is also driving expanded oil exploration, bringing risks of oil spills. Tourism is growing rapidly, and our fishing fleet and commercial shipping activities are increasing as well. There continues to be anticipation of an economic pressure to open up a robust northwest passage for commercial shipping. To add to the stresses of these changes is the fact that these many varied activities are spread over an immense area with little connecting infrastructure. The related maritime security issues are many, and solutions demand increasing maritime situational awareness and improved crisis response capabilities, which are the focuses of our Work Plan. UAA understands the needs and concerns of the Arctic community. It is situated on Alaska’s Southcentral coast with the port facility through which 90% of goods for Alaska arrive. It is one of nineteen US National Strategic Seaports for the US DOD, and its airport is among the top five in the world for cargo throughput. However, maritime security is a national concern and although our focus is on the Arctic environment, we will expand our scope to include other areas in the Lower 48 states. In particular, we will develop sensor systems, decision support tools, ice and oil spill models that include oil in ice, and educational programs that are applicable to the Arctic as well as to the Great Lakes and Northeast. The planned work as detailed in this document addresses the DHS mission as detailed in the National Strategy for Maritime Security, in particular, the mission to Maximize Domain Awareness (pages 16 and 17.) This COE will produce systems to aid in accomplishing two of the objectives of this mission. They are: 1) Sensor Technology developing sensor packages for airborne, underwater, shore-based, and offshore platforms, and 2) Automated fusion and real-time simulation and modeling systems for decision support and planning. An integral part of our efforts will be to develop new methods for sharing of data between platforms, sensors, people, and communities.United States Department of Homeland SecurityCOE ADAC Objective/Purpose / Methodology / Center Management Team and Partners / Evaluation and Transition Plans / USCG Stakeholder Engagement / Workforce Development Strategy / Individual Work Plan by Projects Within a Theme / Appendix A / Appendix B / Appendix

    Does Meaningful Human Control Have Potential for the Regulation of Autonomous Weapon Systems?

    Get PDF

    Autonomous Weapons and Human Responsibilities

    Get PDF
    Although remote-controlled robots flying over the Middle East and Central Asia now dominate reports on new military technologies, robots that are capable of detecting, identifying, and killing enemies on their own are quietly but steadily movingfrom the theoretical to the practical. The enormous difficulty in assigning responsibilities to humans and states for the actions ofthese machines grows with their increasing autonomy. These developments implicate serious legal, ethical, and societal concerns. This Article focuses on the accountability of states and underlying human responsibilities for autonomous weapons under International Humanitarian Law or the Law of Armed Conflict. After reviewing the evolution of autonomous weapon systems and diminishing human involvement in these systems along a continuum of autonomy, this Article argues that the elusive search for individual culpability for the actions of autonomous weapons foreshadows fundamental problems in assigning responsibility to states for the actions of these machines. It further argues that the central legal requirement relevant to determining accountability (especially for violation of the most important international legal obligations protecting the civilian population in armed conflicts) is human judgment. Access to effective human judgment already appears to be emerging as the deciding factor in establishing practical restrictions and framing legal concerns with respect to the deployment of the most advanced autonomous weapons

    Survey of computer vision algorithms and applications for unmanned aerial vehicles

    Get PDF
    This paper presents a complete review of computer vision algorithms and vision-based intelligent applications, that are developed in the field of the Unmanned Aerial Vehicles (UAVs) in the latest decade. During this time, the evolution of relevant technologies for UAVs; such as component miniaturization, the increase of computational capabilities, and the evolution of computer vision techniques have allowed an important advance in the development of UAVs technologies and applications. Particularly, computer vision technologies integrated in UAVs allow to develop cutting-edge technologies to cope with aerial perception difficulties; such as visual navigation algorithms, obstacle detection and avoidance and aerial decision-making. All these expert technologies have developed a wide spectrum of application for UAVs, beyond the classic military and defense purposes. Unmanned Aerial Vehicles and Computer Vision are common topics in expert systems, so thanks to the recent advances in perception technologies, modern intelligent applications are developed to enhance autonomous UAV positioning, or automatic algorithms to avoid aerial collisions, among others. Then, the presented survey is based on artificial perception applications that represent important advances in the latest years in the expert system field related to the Unmanned Aerial Vehicles. In this paper, the most significant advances in this field are presented, able to solve fundamental technical limitations; such as visual odometry, obstacle detection, mapping and localization, et cetera. Besides, they have been analyzed based on their capabilities and potential utility. Moreover, the applications and UAVs are divided and categorized according to different criteria.This research is supported by the Spanish Government through the CICYT projects (TRA2015-63708-R and TRA2013-48314-C3-1-R)

    Autonomous Means of Transport – Who Carries Civil Liability?

    Get PDF
    The study of our topic aims to identify European legislation, with applications in national law, where Romanian norms allow such similarity. Of course, it is interesting to note the extent to which damage is caused by an entity with artificial intelligence and the manner in which it may be held liable from a civil point of view. The basis of this research are the norms in force in Romania and those within the European Union. The method used is mainly the analysis of existing documents in the European Union. What we have in mind is an improvement of the existing legislative framework, but also an interpretation of the rules at the level of the European Union. This paper can be an interesting read for law scholars, from university professors, lawyers, magistrates and other jurists to students, as it presents a current issue that may not be sufficiently developed in contemporary society. The article is not so much an exhaustive work as a compendium that summarizes the laws and situations in practice, with applicability in the matter of civil liability, in case of damage caused by autonomous means of transport
    corecore