336 research outputs found

    Advances on mechanical designs for assistive ankle-foot orthoses

    Get PDF
    Assistive ankle-foot orthoses (AFOs) are powerful solutions to assist or rehabilitate gait on humans. Existing assistive AFO technologies include passive, quasi-passive, and active principles to provide assistance to the users, and their mechanical configuration and control depend on the eventual support they aim for within the gait pattern. In this research we analyze the state-of-the-art of assistive AFOs and classify the different approaches into clusters, describing their basis and working principles. Additionally, we reviewed the purpose and experimental validation of the devices, providing the reader with a better view of the technology readiness level. Finally, the reviewed designs, limitations, and future steps in the field are summarized and discussed.Comment: Figures appear at the end. Article submitted to Frontiers in Bioengineering and Biotechnology (currently under review

    Soft Actuators and Robotic Devices for Rehabilitation and Assistance

    Get PDF
    Soft actuators and robotic devices have been increasingly applied to the field of rehabilitation and assistance, where safe human and machine interaction is of particular importance. Compared with their widely used rigid counterparts, soft actuators and robotic devices can provide a range of significant advantages; these include safe interaction, a range of complex motions, ease of fabrication and resilience to a variety of environments. In recent decades, significant effort has been invested in the development of soft rehabilitation and assistive devices for improving a range of medical treatments and quality of life. This review provides an overview of the current state-of-the-art in soft actuators and robotic devices for rehabilitation and assistance, in particular systems that achieve actuation by pneumatic and hydraulic fluid-power, electrical motors, chemical reactions and soft active materials such as dielectric elastomers, shape memory alloys, magnetoactive elastomers, liquid crystal elastomers and piezoelectric materials. Current research on soft rehabilitation and assistive devices is in its infancy, and new device designs and control strategies for improved performance and safe human-machine interaction are identified as particularly untapped areas of research. Finally, insights into future research directions are outlined

    Knee Exoskeletons Design Approaches to Boost Strength Capability: A Review

    Get PDF
    Exoesqueleto para incrementar la fuerza en las rodillasThere are different devices to increase the strength capacity of people with walking problems. These devices can be classified into exoskeletons, orthotics, and braces. This review aims to identify the state of the art in the design of these medical devices, based on an analysis of patents and literature. However, there are some difficulties in processing the records due to the lack of filters and standardization in the names, generating discrepancies between the search engines, among others. Concerning the patents, 74 patents were analyzed using search engines such as Google Patents, Derwent, The Lens, Patentscope, and Espacenet over the past ten years. A bibliometric analysis was performed using 63 scientific reports from Web of Science and The Lens in the same period for scientific communications. The results show a trend to use the mechanical design of exoskeletons based on articulated rigid structures and elements that provide force to move the structure. These are generally two types: (a) elastic elements and (b) electromechanical elements. The United States accounts for 32% of the technological patents reviewed. The results suggest that the use of exoskeletons or orthoses customized to the users’ needs will continue to increase over the years due to the worldwide growth in disability, particularly related to mobility difficulties and technologies related to the combined use of springs and actuators

    Soft Actuators and Robotic Devices for Rehabilitation and Assistance

    Get PDF
    Soft actuators and robotic devices have been increasingly applied to the field of rehabilitation and assistance, where safe human and machine interaction is of particular importance. Compared with their widely used rigid counterparts, soft actuators and robotic devices can provide a range of significant advantages; these include safe interaction, a range of complex motions, ease of fabrication and resilience to a variety of environments. In recent decades, significant effort has been invested in the development of soft rehabilitation and assistive devices for improving a range of medical treatments and quality of life. This review provides an overview of the current state-of-the-art in soft actuators and robotic devices for rehabilitation and assistance, in particular systems that achieve actuation by pneumatic and hydraulic fluid-power, electrical motors, chemical reactions and soft active materials such as dielectric elastomers, shape memory alloys, magnetoactive elastomers, liquid crystal elastomers and piezoelectric materials. Current research on soft rehabilitation and assistive devices is in its infancy, and new device designs and control strategies for improved performance and safe human-machine interaction are identified as particularly untapped areas of research. Finally, insights into future research directions are outlined

    Design of a wearable active ankle-foot orthosis for both sides

    Get PDF
    Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Biomateriais, Reabilitação e Biomecânica)Portugal is the west European country with the highest rate of stroke-related mortality, being that, of those who suffer cerebrovascular accidents, 40% feature an impairment which can manifest itself through motor sequelae, namely drop foot. An ankle-foot orthosis is often recommended to passively accommodate these motor problems; however, active/powered exoskeletons are also a suitable solution for post-stroke patients. Due to the high complexity of the human ankle joint, one of the problems regarding these active devices is the misalignment occurring between the rehabilitation device and the human joint, which is a cause of parasitic forces, discomfort, and pain. The present master dissertation proposes the development of an adjustable wearable active ankle-foot orthosis that is able to tackle this misalignment issue concerning commercially available lower limb orthotic devices. This work is integrated on the SmartOs – Smart, Stand-alone Active Orthotic System – project that proposes an innovative robotic technology (a wearable mobile lab) oriented to gait rehabilitation. The conceptual design of a standard version of the SmartOs wearable active orthosis was initiated with the analysis of another ankle-foot orthosis – Exo-H2 (Technaid) – from which the necessary design changes were implemented, aiming at the improvement of the established device. In order to achieve a conceptual solution, both the practical knowledge of the Orthos XXI design team and several design methods were used to ensure the accomplishment of the defined requirements. The detailed design process of the standard SmartOs wearable active orthosis prototype is disclosed. With the purpose of validating the design, the critical components were simulated with the resources available in SolidWorks®, and the necessary CAD model’s adaptations were implemented to guarantee a reliable and safe design. The presented design is currently set for further production in Orthos XXI, followed by the mandatory mechanical tests.Portugal é o país da Europa ocidental com maior taxa de mortalidade por acidente vascular cerebral (AVC), sendo que, dos que sofrem acidentes vasculares cerebrais, 40% apresentam uma deficiência que pode manifestar-se por sequelas motoras, nomeadamente o pé pendente. Uma ortótese do tornozelo é recomendada frequentemente para acomodar passivamente esses problemas motores; no entanto, exoesqueletos ativos são também uma solução adequada para pacientes pós-AVC. Devido à alta complexidade da articulação do tornozelo humano, um dos problemas associados a esses dispositivos ativos é o desalinhamento que ocorre entre o dispositivo de reabilitação e a articulação humana, que é uma causa de forças parasitas, desconforto e dor. A presente dissertação de mestrado propõe o desenvolvimento de uma ortótese ativa do tornozelo ajustável e vestível, que seja capaz de resolver esse problema de desalinhamento relativo aos dispositivos ortóticos de membros inferiores disponíveis comercialmente. Este trabalho está integrado no projeto SmartOs - Smart, Stand-alone Active Orthotic System - projeto que propõe uma tecnologia robótica inovadora (wearable mobile lab) direcionada para a reabilitação da marcha. O projeto conceptual de uma versão padrão da ortótese ativa vestível do projeto SmartOs foi iniciado com a análise de outra ortótese do tornozelo – Exo-H2 (Technaid) - a partir da qual foram implementadas as alterações de projeto necessárias, visando o aprimoramento do dispositivo estabelecido. Para se chegar a uma solução conceptual, tanto o conhecimento prático da equipa de projeto da Orthos XXI como os diversos métodos de projeto foram utilizados para garantir o cumprimento dos requisitos definidos. O processo do desenho detalhado da versão padrão da ortótese ativa SmartOs será também divulgado. Com o objetivo de validar o projeto, os componentes críticos foram simulados com os recursos disponíveis no SolidWorks® e as adaptações necessárias do modelo CAD foram implementadas para garantir um projeto fidedigno e seguro. O projeto apresentado está atualmente em preparação para produção na empresa Orthos XXI, depois do qual se seguem os ensaios mecânicos obrigatórios

    Development of a 2-DoF Ankle Exoskeleton

    Get PDF

    Foot/Ankle Prostheses Design Approach Based on Scientometric and Patentometric Analyses

    Get PDF
    There are different alternatives when selecting removable prostheses for below the knee amputated patients. The designs of these prostheses vary according to their different functions. These prostheses designs can be classified into Energy Storing and Return (ESAR), Controlled Energy Storing and Return (CESR), active, and hybrid. This paper aims to identify the state of the art related to the design of these prostheses of which ESAR prostheses are grouped into five types, and active and CESR are categorized into four groups. Regarding patent analysis, 324 were analyzed over the last six years. For scientific communications, a bibliometric analysis was performed using 104 scientific reports from the Web of Science in the same period. The results show a tendency of ESAR prostheses designs for patents (68%) and active prostheses designs for scientific documentation (40%).Beca Conacyt Doctorad

    Hierarchical Compliance Control of a Soft Ankle Rehabilitation Robot Actuated by Pneumatic Muscles

    Get PDF
    Traditional compliance control of a rehabilitation robot is implemented in task space by using impedance or admittance control algorithms. The soft robot actuated by pneumatic muscle actuators (PMAs) is becoming prominent for patients as it enables the compliance being adjusted in each active link, which, however, has not been reported in the literature. This paper proposes a new compliance control method of a soft ankle rehabilitation robot that is driven by four PMAs configured in parallel to enable three degrees of freedom movement of the ankle joint. A new hierarchical compliance control structure, including a low-level compliance adjustment controller in joint space and a high-level admittance controller in task space, is designed. An adaptive compliance control paradigm is further developed by taking into account patient’s active contribution and movement ability during a previous period of time, in order to provide robot assistance only when it is necessarily required. Experiments on healthy and impaired human subjects were conducted to verify the adaptive hierarchical compliance control scheme. The results show that the robot hierarchical compliance can be online adjusted according to the participant’s assessment. The robot reduces its assistance output when participants contribute more and vice versa, thus providing a potentially feasible solution to the patient-in-loop cooperative training strateg
    corecore