41 research outputs found

    Mechatronic design solution for planar overconstrained cable-driven parallel robot

    Get PDF
    Cable-driven parallel robots (CDPRs) combine the successful features of parallel manipulators with the benefits of cable transmissions. The payload is divided among light extendable cables, resulting in an energy-efficient system that can achieve high end-effector acceleration over a huge workspace. A CDPR is formed by a set of actuation units, and a mobile platform, working as an end-effector (EE). The cables, driven by the actuation units, are guided inside the robot workspace using a guidance system and then connected to the mobile platform. The variation of cable lengths is responsible for the EE displacement throughout the robot workspace. These features result in easily reconfigurable systems where the workspace can be modified by relocating the actuation and guidance units. Nevertheless, the use of CDPRs in industrial environments is still limited, due to the drawbacks of employing flexible cables. Indeed, cables impose unilateral constraints that can only exert tensile forces and, consequently, the EE cannot withstand any arbitrary external action. To enhance the robot’s controllability, CDPRs can be overconstrained by employing a number of cables higher than the degrees of freedom of the EE. This allows cables to pull one against the other and to keep the overall system controllable over a wide range of externally applied loads. In this thesis, an eight-cable, planar, overconstrained CDPR is designed: the robot has the deployable and reconfigurable features required by the task. In particular, this CDPR has its actuation units installed into the EE mobile platform, and the frame anchor points can be rearranged to obtain a discrete reconfiguration. The cable arrangement, location of anchor points and mechanical design have been studied, by implementing a hybrid optimisation procedure. The genetic algorithm is combined with a local minimum optimiser, maximizing the CDPR volume index and deriving a mechanical design for the prototype

    Designing for adaptability in architecture

    Get PDF
    The research is framed on the premise that designing buildings that can adapt by accommodating change easier and more cost-effectively provides an effective means to a desired end a more sustainable built environment. In this context, adaptability can be viewed as a means to decrease the amount of new construction (reduce), (re)activate underused or vacant building stock (reuse) and enhance disassembly/ deconstruction of components (reuse, recycle) - prolonging the useful life of buildings (reduce, reuse, recycle). The aim of the research is to gain a holistic overview of the concept of adaptability in the construction industry and provide an improved framework to design for, deploy and implement adaptability. An over-arching research question was posited to guide the inquiry: how can architects understand, communicate, design for and test the concept of adaptability in the context of the design process? The research followed Dubois and Gadde s (2002) systematic combining as an over-arching approach that continuously moves between the empirical world and theoretical models allowing the co-evolution of data collection and theory from the beginning as part of a non-linear process with the objective of matching theory with reality. An initial framework was abducted from a preliminary collection of data from which a set of mixed research methods was deployed to explore adaptability (interviews, building case studies, dependency structural matrices, practitioner surveys and workshop). Emergent from the data is an expanded and revised theory on designing for adaptability consisting of concepts, models and propositions. The models illustrate many of the casual links between the physical design structure of the building (e.g. plan depth, storey height) and the soft contingencies of a messy design/construction/occupation process (e.g. procurement route, funding methods, stakeholder mindsets). In an effort to enhance building adaptability, the abducted propositions suggest a shift in the way the industry values buildings and conducts aspects of the design process and how designer s approach designing for adaptability

    Mechatronic Systems

    Get PDF
    Mechatronics, the synergistic blend of mechanics, electronics, and computer science, has evolved over the past twenty five years, leading to a novel stage of engineering design. By integrating the best design practices with the most advanced technologies, mechatronics aims at realizing high-quality products, guaranteeing at the same time a substantial reduction of time and costs of manufacturing. Mechatronic systems are manifold and range from machine components, motion generators, and power producing machines to more complex devices, such as robotic systems and transportation vehicles. With its twenty chapters, which collect contributions from many researchers worldwide, this book provides an excellent survey of recent work in the field of mechatronics with applications in various fields, like robotics, medical and assistive technology, human-machine interaction, unmanned vehicles, manufacturing, and education. We would like to thank all the authors who have invested a great deal of time to write such interesting chapters, which we are sure will be valuable to the readers. Chapters 1 to 6 deal with applications of mechatronics for the development of robotic systems. Medical and assistive technologies and human-machine interaction systems are the topic of chapters 7 to 13.Chapters 14 and 15 concern mechatronic systems for autonomous vehicles. Chapters 16-19 deal with mechatronics in manufacturing contexts. Chapter 20 concludes the book, describing a method for the installation of mechatronics education in schools

    An aesthetic for sustainable interactions in product-service systems?

    Get PDF
    Copyright @ 2012 Greenleaf PublishingEco-efficient Product-Service System (PSS) innovations represent a promising approach to sustainability. However the application of this concept is still very limited because its implementation and diffusion is hindered by several barriers (cultural, corporate and regulative ones). The paper investigates the barriers that affect the attractiveness and acceptation of eco-efficient PSS alternatives, and opens the debate on the aesthetic of eco-efficient PSS, and the way in which aesthetic could enhance some specific inner qualities of this kinds of innovations. Integrating insights from semiotics, the paper outlines some first research hypothesis on how the aesthetic elements of an eco-efficient PSS could facilitate user attraction, acceptation and satisfaction

    Volume 3 – Conference

    Get PDF
    We are pleased to present the conference proceedings for the 12th edition of the International Fluid Power Conference (IFK). The IFK is one of the world’s most significant scientific conferences on fluid power control technology and systems. It offers a common platform for the presentation and discussion of trends and innovations to manufacturers, users and scientists. The Chair of Fluid-Mechatronic Systems at the TU Dresden is organizing and hosting the IFK for the sixth time. Supporting hosts are the Fluid Power Association of the German Engineering Federation (VDMA), Dresdner Verein zur Förderung der Fluidtechnik e. V. (DVF) and GWT-TUD GmbH. The organization and the conference location alternates every two years between the Chair of Fluid-Mechatronic Systems in Dresden and the Institute for Fluid Power Drives and Systems in Aachen. The symposium on the first day is dedicated to presentations focused on methodology and fundamental research. The two following conference days offer a wide variety of application and technology orientated papers about the latest state of the art in fluid power. It is this combination that makes the IFK a unique and excellent forum for the exchange of academic research and industrial application experience. A simultaneously ongoing exhibition offers the possibility to get product information and to have individual talks with manufacturers. The theme of the 12th IFK is “Fluid Power – Future Technology”, covering topics that enable the development of 5G-ready, cost-efficient and demand-driven structures, as well as individual decentralized drives. Another topic is the real-time data exchange that allows the application of numerous predictive maintenance strategies, which will significantly increase the availability of fluid power systems and their elements and ensure their improved lifetime performance. We create an atmosphere for casual exchange by offering a vast frame and cultural program. This includes a get-together, a conference banquet, laboratory festivities and some physical activities such as jogging in Dresden’s old town.:Group 8: Pneumatics Group 9 | 11: Mobile applications Group 10: Special domains Group 12: Novel system architectures Group 13 | 15: Actuators & sensors Group 14: Safety & reliabilit
    corecore