5 research outputs found

    Denormalization of visibilities for in-orbit calibration of interferometric radiometers

    Get PDF
    This paper reviews the relative calibration of an interferometric radiometer taking into account the experimental results of the first batch of receivers developed in the frame of the European Space Agency's Soil Moisture and Ocean Salinity mission. Measurements show state-of-the-art baseline performance as long as the system is capable of correcting the effect of orbital temperature swing. A method to validate internal calibration during in-orbit deep-sky views and to correct linearity errors is also presented.Peer Reviewe

    Aquarius and Remote Sensing of Sea Surface Salinity from Space

    Get PDF
    Aquarius is an L-band radiometer and scatterometer instrument combination designed to map the salinity field at the surface of the ocean from space. The instrument is designed to provide global salinity maps on a monthly basis with a spatial resolution of 150 km and an accuracy of 0.2 psu. The science objective is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean. This data will promote understanding of ocean circulation and its role in the global water cycle and climate

    Development of a high-stability microstrip-based L-band radiometer for ocean salinity measurements

    No full text

    Development of a High-Stability Microstrip-based L-band Radiometer for Ocean Salinity Measurements

    No full text
    The development of a microstrip-based L-band Dicke radiometer with the long-term stability required for future ocean salinity measurements to an accuracy of 0.1 psu is presented. This measurement requires the L-band radiometers to have calibration stabilities of less than or equal to 0.05 K over 2 days. This research has focused on determining the optimum radiometer requirements and configuration to achieve this objective. System configuration and component performance have been evaluated with radiometer test beds at both JPL and GSFC. The GSFC testbed uses a cryogenic chamber that allows long-term characterization at radiometric temperatures in the range of 70 - 120 K. The research has addressed several areas including component characterization as a function of temperature and DC bias, system linearity, optimum noise diode injection calibration, and precision temperature control of components. A breadboard radiometer, utilizing microstrip-based technologies, has been built to demonstrate this long-term stability

    Development of a high stability microstrip-based L-band radiometer for ocean salinity measurements.

    No full text
    corecore