194 research outputs found

    Development, verification, and maintenance of computational software in geodynamics

    Get PDF
    Research on dynamical processes within the Earth and planets increasingly relies upon sophisticated, large-scale computational models. Improved understanding of fundamental physical processes such as mantle convection and the geodynamo, magma dynamics, crustal and lithospheric deformation, earthquake nucleation, and seismic wave propagation, are heavily dependent upon better numerical modeling. Surprisingly, the rate-limiting factor for progress in these areas is not just computing hardware, as was once the case. Rather, advances in software are not keeping pace with the recent improvements in hardware. Modeling tools in geophysics are usually developed and maintained by individual scientists, or by small groups. But it is difficult for any individual, or even a small group, to keep up with sweeping advances in computing hardware, parallel processing software, and numerical modeling methodology

    Large Scale Computing and Storage Requirements for Biological and Environmental Research

    Full text link

    Laskennallisten avaruussäämallien kehittäminen, validointi ja käyttö

    Get PDF
    Currently the majority of space-based assets are located inside the Earth's magnetosphere where they must endure the effects of the near-Earth space environment, i.e. space weather, which is driven by the supersonic flow of plasma from the Sun. Space weather refers to the day-to-day changes in the temperature, magnetic field and other parameters of the near-Earth space, similarly to ordinary weather which refers to changes in the atmosphere above ground level. Space weather can also cause adverse effects on the ground, for example, by inducing large direct currents in power transmission systems. The performance of computers has been growing exponentially for many decades and as a result the importance of numerical modeling in science has also increased rapidly. Numerical modeling is especially important in space plasma physics because there are no in-situ observations of space plasmas outside of the heliosphere and it is not feasible to study all aspects of space plasmas in a terrestrial laboratory. With the increasing number of computational cores in supercomputers, the parallel performance of numerical models on distributed memory hardware is also becoming crucial. This thesis consists of an introduction, four peer reviewed articles and describes the process of developing numerical space environment/weather models and the use of such models to study the near-Earth space. A complete model development chain is presented starting from initial planning and design to distributed memory parallelization and optimization, and finally testing, verification and validation of numerical models. A grid library that provides good parallel scalability on distributed memory hardware and several novel features, the distributed cartesian cell-refinable grid (DCCRG), is designed and developed. DCCRG is presently used in two numerical space weather models being developed at the Finnish Meteorological Institute. The first global magnetospheric test particle simulation based on the Vlasov description of plasma is carried out using the Vlasiator model. The test shows that the Vlasov equation for plasma in six-dimensionsional phase space is solved correctly by Vlasiator, that results are obtained beyond those of the magnetohydrodynamic (MHD) description of plasma and that global magnetospheric simulations using a hybrid-Vlasov model are feasible on current hardware. For the first time four global magnetospheric models using the MHD description of plasma (BATS-R-US, GUMICS, OpenGGCM, LFM) are run with identical solar wind input and the results compared to observations in the ionosphere and outer magnetosphere. Based on the results of the global magnetospheric MHD model GUMICS a hypothesis is formulated for a new mechanism of plasmoid formation in the Earth's magnetotail.Avaruuteen lähetetyistä laitteista suurin osa sijaitsee Maan magnetosfäärissä, missä ne altistuvat avaruussäälle. Avaruussäällä tarkoitetaan Maan lähiavaruuden läpötilan, magneettikentän ja muiden ominaisuuksien päivittäistä vaihtelua auringosta jatkuvasti virtaavan plasman - aurinkotuulen - vuoksi. Avaruussäällä voi olla haitallisia vaikutuksia myön Maan pinnalla, esimerkkinä sähkönsiirtoverkkoihin indusoituvat suuret tasavirrat. Tietokoneiden laskentateho on kasvanut eksponentiaalisesti jo vuosikymmenien ajan, minkä seurauksena myös laskennallisen mallinnuksen merkitys tieteelle on kasvanut huomattavasti. Laskennallinen mallintaminen on erityisen tärkeää avaruusplasmafysiikassa, sillä aurinkokunnan ulkopuolelta ei ole suoria mittauksia, eikä kaikkia avaruusplasman ominaisuuksia voida tutkia maanpäällisissä laboratorioissa. Supertietokoneiden laskentaytimien määrän kasvaessa myös laskennallisten mallien rinnakkaisesta suorituskyvystä on tullut ratkaisevan tärkeää. Väitöskirja koostuu johdannosta ja neljästä vertaisarvioidusta julkaisusta joissa kuvataan laskennallisten avaruussäämallien kehittämistä ja käyttöä Maan lähiavaruuden tutkimiseen. Avaruussäämallien kaikki kehittämisaskeleet käydään läpi alkaen alustavasta suunnittelusta ja toteutuksesta, jaetun muistin rinnakkaistuksesta ja laskentanopeuden optimoinnista aina testaukseen ja validointiin asti. Väitöskirjan yhteydessä on suunniteltu ja toteutettu rinnakkainen hila jota käytetään tällä hetkellä kahdessa Ilmatieteen laitoksella kehitettävässä avaruussäämallissa. Näistä toisen, Vlasovin yhtälöllä plasmaa mallintavan Vlasiatorin, täyden kuusiulotteisen faasiavaruuden (kolme paikka- ja kolme nopeusulottuvuutta) käsittävällä magnetosfääritestillä on osoitettu mallin toimivuus ja soveltuvuus Maapallon koko magnetosfäärin mallintamiseen nykyisillä supertietokoneilla. Ensimmäistä kertaa on myös vertailtu neljän eri avaruussäämallin (BATS-R-US, GUMICS, OpenGGCM, LFM) tuottamia ennusteita Maan lähiavaruudesta käyttäen samaa aurinkotuulisyötettä

    NASA high performance computing and communications program

    Get PDF
    The National Aeronautics and Space Administration's HPCC program is part of a new Presidential initiative aimed at producing a 1000-fold increase in supercomputing speed and a 100-fold improvement in available communications capability by 1997. As more advanced technologies are developed under the HPCC program, they will be used to solve NASA's 'Grand Challenge' problems, which include improving the design and simulation of advanced aerospace vehicles, allowing people at remote locations to communicate more effectively and share information, increasing scientist's abilities to model the Earth's climate and forecast global environmental trends, and improving the development of advanced spacecraft. NASA's HPCC program is organized into three projects which are unique to the agency's mission: the Computational Aerosciences (CAS) project, the Earth and Space Sciences (ESS) project, and the Remote Exploration and Experimentation (REE) project. An additional project, the Basic Research and Human Resources (BRHR) project exists to promote long term research in computer science and engineering and to increase the pool of trained personnel in a variety of scientific disciplines. This document presents an overview of the objectives and organization of these projects as well as summaries of individual research and development programs within each project

    The 1994 Silver Anniversary of APOLLO 11: From the Moon to the Stars

    Get PDF
    This report summarizes the technology transfer, advanced studies, and research and technology efforts in progress at Marshall Space Flight Center (MSFC) in 1994

    Activities of the Research Institute for Advanced Computer Science

    Get PDF
    The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on June 6, 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under contract with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. Research at RIACS is currently being done in the following areas: (1) parallel computing; (2) advanced methods for scientific computing; (3) high performance networks; and (4) learning systems. RIACS technical reports are usually preprints of manuscripts that have been submitted to research journals or conference proceedings. A list of these reports for the period January 1, 1994 through December 31, 1994 is in the Reports and Abstracts section of this report

    HPCCP/CAS Workshop Proceedings 1998

    Get PDF
    This publication is a collection of extended abstracts of presentations given at the HPCCP/CAS (High Performance Computing and Communications Program/Computational Aerosciences Project) Workshop held on August 24-26, 1998, at NASA Ames Research Center, Moffett Field, California. The objective of the Workshop was to bring together the aerospace high performance computing community, consisting of airframe and propulsion companies, independent software vendors, university researchers, and government scientists and engineers. The Workshop was sponsored by the HPCCP Office at NASA Ames Research Center. The Workshop consisted of over 40 presentations, including an overview of NASA's High Performance Computing and Communications Program and the Computational Aerosciences Project; ten sessions of papers representative of the high performance computing research conducted within the Program by the aerospace industry, academia, NASA, and other government laboratories; two panel sessions; and a special presentation by Mr. James Bailey
    corecore