21,860 research outputs found

    Flow velocity mapping using contrast enhanced high-frame-rate plane wave ultrasound and image tracking: methods and initial in vitro and in vivo evaluation

    Get PDF
    Ultrasound imaging is the most widely used method for visualising and quantifying blood flow in medical practice, but existing techniques have various limitations in terms of imaging sensitivity, field of view, flow angle dependence, and imaging depth. In this study, we developed an ultrasound imaging velocimetry approach capable of visualising and quantifying dynamic flow, by combining high-frame-rate plane wave ultrasound imaging, microbubble contrast agents, pulse inversion contrast imaging and speckle image tracking algorithms. The system was initially evaluated in vitro on both straight and carotid-mimicking vessels with steady and pulsatile flows and in vivo in the rabbit aorta. Colour and spectral Doppler measurements were also made. Initial flow mapping results were compared with theoretical prediction and reference Doppler measurements and indicate the potential of the new system as a highly sensitive, accurate, angle-independent and full field-of-view velocity mapping tool capable of tracking and quantifying fast and dynamic flows

    EFSUMB Recommendations and Guidelines for Gastrointestinal Ultrasound - Part 1: Examination Techniques and Normal Findings (Long version).

    Get PDF
    Abstract ▼ In October 2014 the European Federation of Societies for Ultrasound in Medicine and Biology formed a Gastrointestinal Ultrasound (GIUS) task force group to promote the use of GIUS in a clinical setting. One of the main objectives of the task force group was to develop clinical recommendations and guidelines for the use of GIUS under the auspices of EFSUMB. The first part, gives an overview of the examination techniques for GIUS recommended by experts in the field. It also presents the current evidence for the interpretation of normal sonoanatomical and physiological features as examined with different ultrasound modalities

    The first joint ESGAR/ ESPR consensus statement on the technical performance of cross-sectional small bowel and colonic imaging

    Get PDF
    Objectives: To develop guidelines describing a standardised approach to patient preparation and acquisition protocols for magnetic resonance imaging (MRI), computed tomography (CT) and ultrasound (US) of the small bowel and colon, with an emphasis on imaging inflammatory bowel disease. Methods: An expert consensus committee of 13 members from the European Society of Gastrointestinal and Abdominal Radiology (ESGAR) and European Society of Paediatric Radiology (ESPR) undertook a six-stage modified Delphi process, including a detailed literature review, to create a series of consensus statements concerning patient preparation, imaging hardware and image acquisition protocols. Results: One hundred and fifty-seven statements were scored for agreement by the panel of which 129 statements (82 %) achieved immediate consensus with a further 19 (12 %) achieving consensus after appropriate modification. Nine (6 %) statements were rejected as consensus could not be reached. Conclusions: These expert consensus recommendations can be used to help guide cross-sectional radiological practice for imaging the small bowel and colon. Key points: • Cross-sectional imaging is increasingly used to evaluate the bowel • Image quality is paramount to achieving high diagnostic accuracy • Guidelines concerning patient preparation and image acquisition protocols are provided

    Assessing the performance of ultrafast vector flow imaging in the neonatal heart via multiphysics modeling and In vitro experiments

    Get PDF
    Ultrafast vector flow imaging would benefit newborn patients with congenital heart disorders, but still requires thorough validation before translation to clinical practice. This paper investigates 2-D speckle tracking (ST) of intraventricular blood flow in neonates when transmitting diverging waves at ultrafast frame rate. Computational and in vitro studies enabled us to quantify the performance and identify artifacts related to the flow and the imaging sequence. First, synthetic ultrasound images of a neonate's left ventricular flow pattern were obtained with the ultrasound simulator Field II by propagating point scatterers according to 3-D intraventricular flow fields obtained with computational fluid dynamics (CFD). Noncompounded diverging waves (opening angle of 60 degrees) were transmitted at a pulse repetition frequency of 9 kHz. ST of the B-mode data provided 2-D flow estimates at 180 Hz, which were compared with the CFD flow field. We demonstrated that the diastolic inflow jet showed a strong bias in the lateral velocity estimates at the edges of the jet, as confirmed by additional in vitro tests on a jet flow phantom. Furthermore, ST performance was highly dependent on the cardiac phase with low flows (< 5 cm/s), high spatial flow gradients, and out-of-plane flow as deteriorating factors. Despite the observed artifacts, a good overall performance of 2-D ST was obtained with a median magnitude underestimation and angular deviation of, respectively, 28% and 13.5 degrees during systole and 16% and 10.5 degrees during diastole

    Advanced Imaging of Inflammation in Knee Osteoarthritis

    Get PDF
    This thesis focuses on imaging methods to study the role of inflammation in knee osteoarthritis. The aims of this thesis are I) to evaluate disturbed perfusion patterns in subchondral bone and the infrapatellar fat pad using perfusion MRI, and II) to assess new magnetic resonance and ultrasound imaging methods for diagnosis of synovitis in knee osteoarthritis

    Advanced Imaging of Inflammation in Knee Osteoarthritis

    Get PDF

    Using Computed Tomography Perfusion to Evaluate the Blood-Brain-Barrier and Blood-Tumor-Barrier Response following Focused Ultrasound Sonication with Microbubble Administration

    Get PDF
    The blood-brain-barrier (BBB) is the single most limiting factor in the delivery of neurotherapeutics into the brain. Focused ultrasound sonication combined with intravenous microbubble administration (FUSwMB) is a novel technique that can transiently disrupt the BBB, with minimal vascular or tissue damage, allowing for localized drug delivery over the targeted region. The goals of this thesis are to: 1) use computed tomography (CT) perfusion to measure the permeability surface area product (PS) following USwMB in normal rabbits with an intact BBB, and 2) to evaluate the blood-tumor-barrier (BTB) PS response following FUSwMB in a C6 rat glioma model

    Quantitative imaging:systematic review of perfusion/flow phantoms

    Get PDF
    Background: We aimed at reviewing design and realisation of perfusion/flow phantoms for validating quantitative perfusion imaging (PI) applications to encourage best practices. Methods: A systematic search was performed on the Scopus database for “perfusion”, “flow”, and “phantom”, limited to articles written in English published between January 1999 and December 2018. Information on phantom design, used PI and phantom applications was extracted. Results: Of 463 retrieved articles, 397 were rejected after abstract screening and 32 after full-text reading. The 37 accepted articles resulted to address PI simulation in brain (n = 11), myocardial (n = 8), liver (n = 2), tumour (n = 1), finger (n = 1), and non-specific tissue (n = 14), with diverse modalities: ultrasound (n = 11), computed tomography (n = 11), magnetic resonance imaging (n = 17), and positron emission tomography (n = 2). Three phantom designs were described: basic (n = 6), aligned capillary (n = 22), and tissue-filled (n = 12). Microvasculature and tissue perfusion were combined in one compartment (n = 23) or in two separated compartments (n = 17). With the only exception of one study, inter-compartmental fluid exchange could not be controlled. Nine studies compared phantom results with human or animal perfusion data. Only one commercially available perfusion phantom was identified. Conclusion: We provided insights into contemporary phantom approaches to PI, which can be used for ground truth evaluation of quantitative PI applications. Investigators are recommended to verify and validate whether assumptions underlying PI phantom modelling are justified for their intended phantom application

    Hemodynamic Quantifications By Contrast-Enhanced Ultrasound:From In-Vitro Modelling To Clinical Validation

    Get PDF
    corecore