216 research outputs found

    Acoustic Transmitters for Underwater Neutrino Telescopes

    Get PDF
    In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars), high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing received signals. Secondly, a compact acoustic transmitter array has been developed for the calibration of acoustic neutrino detection systems. The array is able to mimic the signature of ultra-high-energy neutrino interaction in emission directivity and signal shape. The technique of parametric acoustic sources has been used to achieve the proposed aim. The developed compact array has practical features such as easy manageability and operation. The prototype designs and the results of different tests are described. The techniques applied for these two acoustic systems are so powerful and versatile that may be of interest in other marine applications using acoustic transmitters.Comment: 21 pages, 14 figures,1 tabl

    Diseño y desarrollo de la electrónica de los emisores acústicos para los sistemas de posicionamiento y calibración de telescopios submarinos de neutrinos

    Full text link
    Tesis por compendioNeutrino telescopes are a new way of looking at the Universe. For more than a decade these structures are being designed to study the Universe from a new point of view, that is, from the particles generated in the cosmic accelerators of particles. These infrastructures are not only useful to study the Universe, but they can also be used in the field of Particle Physics and even in the study of underwater life. Most of these telescopes are based on the detection of the so-called Cherenkov light using photomultipliers, the difference between them lies in the medium in which they are located (ice or water) and in the infrastructure used. Specifically, European telescopes mount these photomultipliers in an underwater vertical structure anchored at great depth, which is under the influence of sea currents. For this reason they suffer displacements that affect the location of the photomultipliers and it becomes necessary to implement a positioning system for the telescope to be functional. For this, an acoustic system consisting of emitters anchored to the sea floor and receivers located at the different levels of the vertical structure is used. One of the objectives of the present thesis is the development of these acoustic emitters. For this purpose we have developed different laboratory prototypes with different features until obtaining an improved prototype that was installed and tested in ANTARES and NEMO telescopes. This showed that the prototype worked perfectly within the established requirements and then, we proceed to design a final version of the much more powerful and functional emitter, acoustic beacon, to be mounted inside aluminum vessels together with an omnidirectional acoustic transducer, which will be located in anchored positions of the new KM3NeT neutrino telescope. In collaboration with the MSM Company, 18 acoustic beacons were developed for KM3NeT-ARCA being two of them installed in the first marine campaign at the end of 2015, and being able then to verify their correct operation. On the other hand, interaction of ultraenergetic neutrinos with matter also produces a thermoacoustic pulse with bipolar form, axial symmetry and highly directive. The feasibility of the acoustic detection technique and the possibility of implementing it in these telescopes have been under study for years. In order to test and calibrate this technique, it is necessary to have an acoustic emitter system able of generating a signal similar to the neutrino signature. This has been the second objective developed in this thesis. To achieve this objective, a compact and versatile calibrator based on an array of acoustic transducers using parametric generation has been designed. Given the complexity of the pulse to emulate and the novelty of the technique to be used, it has been necessary to carry out different laboratory tests in order to obtain suitable transducers and electronics able of making them to work at the required power and efficiency. The positive results obtained in this line suggest that we will be able to obtain a full functional neutrino acoustic calibrator soon. Finally, I would like to mention that I have participated in the different research and activities described in the thesis, putting especial emphasis in the development of the electronics and the software/firmware of the developed acoustic emitters.Los telescopios de neutrinos son una nueva forma de observar el Universo. Desde hace más de una década se están diseñando este tipo de estructuras con el propósito de estudiar el Universo desde un nuevo punto de vista, el de las partículas que se generan en los aceleradores de partículas cósmicos. Estas infraestructuras no solo se limitan al estudio del Universo, sino que también pueden ser utilizadas en el campo de la Física de partículas e incluso en el estudio de la vida submarina. La mayoría de estos telescopios se basan en la detección de la llamada luz de Cherenkov mediante fotomultiplicadores, la diferencia entre ellos radica en el medio en que se ubican (hielo o agua) y en la infraestructura utilizada. Concretamente, los telescopios europeos montan dichos fotomultiplicadores en una estructura vertical submarina anclada a gran profundidad, la cual está sometida a la influencia de las corrientes marinas. Por este motivo sufren desplazamientos que afectan a la localización de los fotomultiplicadores y se hace necesaria la implementación de un sistema de posicionamiento para que el telescopio sea funcional. Para ello se utiliza un sistema acústico consistente en unos emisores anclados al suelo marino y unos receptores situados en los diferentes niveles de la estructura vertical. Uno de los objetivos de la presente tesis es el desarrollo de estos emisores acústicos. Con este fin se han desarrollado diferentes prototipos de laboratorio con los que se han ido escalando prestaciones hasta obtener un prototipo que ha sido instalado y testeado en los telescopios ANTARES y NEMO. Así se demostró que el prototipo funcionaba perfectamente dentro de los requisitos establecidos, pasándose a diseñar una versión final del emisor acústico mucho más potente y funcional para ser montada dentro de vasijas de aluminio junto con un traductor omnidireccional en las anclas del nuevo telescopio de neutrinos KM3NeT. Conjuntamente con la empresa MSM se elaboraron 18 equipos para KM3NeT-ARCA, dos de los cuales fueron instalados en la primera campaña marina a finales de 2015 comprobándose su correcto funcionamiento. Por otro lado, la interacción de los neutrinos ultraenergéticos con la materia también produce un pulso termoacústico con forma bipolar, simetría axial y altamente directivo. Desde hace años se está estudiando la viabilidad de la técnica de detección acústica y la posibilidad de implementarla en dichos telescopios. Para poder poner a prueba y calibrar dicha técnica es necesario disponer de un sistema emisor acústico que sea capaz de generar una señal similar a la descrita. Este ha sido el segundo objetivo desarrollado en esta tesis. Para ello se ha diseñado un calibrador compacto y versátil basado en un array de transductores acústicos usando generación paramétrica. Dada la complejidad del pulso a emular y lo novedoso de la técnica a utilizar, se ha requerido la realización de numerosas pruebas de laboratorio con el fin de conseguir unos transductores adecuados y la electrónica capaz de hacerlos funcionar a la potencia y eficiencia requerida. Los positivos resultados obtenidos en esta línea hacen prever que, en breve, podremos obtener un calibrador acústico de neutrinos funcional. Finalmente, cabe reseñar que he participado en las diferentes investigaciones y actividades que se describen en la tesis, siendo mi cometido principal el desarrollo tanto de la electrónica como de los diferentes softwares/firmwares implicados en los emisores acústicos desarrollados.Els telescopis de neutrins són una nova forma d'observar l'Univers. Des de fa més d'una dècada s'estan dissenyant aquest tipus d'estructures amb el propòsit d'estudiar l'Univers des d'un nou punt de vista, el de les partícules que es generen en els acceleradors de partícules còsmics. Estes infraestructures no sols es limiten a l'estudi de l'Univers, sinó que també poden ser utilitzades en el camp de la Física de partícules i fins i tot en l'estudi de la vida submarina. La majoria d'aquests telescopis es basen en la detecció de l'anomenada llum de Cherenkov per mitjà de fotomultiplicadors, la diferència entre ells radica en el mig en què s'ubiquen (gel o aigua) i en la infraestructura utilitzada. Concretament, els telescopis europeus munten dits fotomultiplicadors en una estructura vertical submarina ancorada a gran profunditat, la qual està sotmesa a la influència dels corrents marins. Per este motiu pateixen desplaçaments que afecten a la localització dels fotomultiplicadors i es fa necessària la implementació d'un sistema de posicionament per a què el telescopi siga funcional. Per a això s'utilitza un sistema acústic consistent en uns emissors ancorats al sòl marí i uns receptors situats en els diferents nivells de l'estructura vertical. Un dels objectius de la present tesi és el desenvolupament d'aquests emissors acústics. Amb este fi s'han desenvolupat diferents prototips de laboratori amb els quals s'han anat escalant prestacions fins a obtindre un prototip que ha sigut instal·lat i testeat en els telescopis ANTARES i NEMO. Així es va demostrar que el prototip funcionava perfectament dins dels requisits establerts, passant-se a dissenyar una versió final de l'emissor acústic molt més potent i funcional per a ser muntada dins d'atuells d'alumini junt amb un traductor omnidireccional en les àncores del nou telescopi de neutrins KM3NeT. Conjuntament amb l'empresa MSM es van elaborar 18 equips per a KM3NeT-ARCA, dos dels quals van ser instal·lats en la primera campanya marina a finals de 2015 comprovant-se el seu correcte funcionament. D'altra banda, la interacció dels neutrins ultraenergètics amb la matèria també produeix un pols termoacústic amb forma bipolar, simetria axial i altament directiu. Des de fa anys s'està estudiant la viabilitat de la tècnica de detecció acústica i la possibilitat d'implementar-la en els esmentats telescopis. Per a poder posar a prova i calibrar esta tècnica és necessari disposar d'un sistema emissor acústic que siga capaç de generar un senyal semblant al descrit. Aquest ha sigut el segon objectiu desenvolupat en aquesta tesi. Per a això s'ha dissenyat un calibrador compacte i versàtil basat en un array de transductores acústics utilitzant generació paramètrica. Donada la complexitat del pols a emular i la novetat de la tècnica a utilitzar, s'ha requerit la realització de nombroses proves de laboratori a fi d'aconseguir uns transductors adequats i l'electrònica capaç de fer-los funcionar a la potència i eficiència requerida. Els positius resultats obtinguts en esta línia fan preveure que, en breu, podrem obtindre un calibrador acústic de neutrins funcional. Finalment, cal ressenyar que he participat en les diferents investigacions i activitats que es descriuen en la tesi, sent la meua comesa principal el desenvolupament tant de l'electrònica com dels diferents softwares/firmwares implicats en els emissors acústics desenvolupats.Llorens Alvarez, CD. (2017). Diseño y desarrollo de la electrónica de los emisores acústicos para los sistemas de posicionamiento y calibración de telescopios submarinos de neutrinos [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/88401TESISCompendi

    R&D studies for the development of a compact transmitter able to mimic the acousticsignature of a UHE neutrino interaction

    Full text link
    [EN] Calibration of acoustic neutrino telescopes with neutrino-like signals is essential to evaluate the feasibility of the technique and to know the efficiency of the detectors. However, it is not straightforward to have acoustic transmitters that, on one hand, are able to mimic the signature of a UHE neutrino interaction, that is, a bipolar acoustic pulse with the 'pancake' directivity, and on the other hand, fulfil practical issues such as ease of deployment and operation. This is a non-trivial problem since it requires directive transducer with cylindrical symmetry for a broadband frequency range. Classical solutions using linear arrays of acoustic transducers result in long arrays with many elements, which increase the cost and the complexity for deployment and operation. In this paper we present the extension of our previous R&D studies using the parametric acoustic source technique by dealing with the cylindrical symmetry and demonstrating that it is possible to use this technique for having a compact solution that could be much more easily included in neutrino telescope infrastructures or used in specific sea campaigns for calibration. © 2010 Elsevier B.V.This work has been supported by the Ministerio de Ciencia e Innovacio´n (Spain Government), project references FPA2007- 63729, FPA2009-13983-C02-02, ACI2009-1067 and ConsoliderIngenio Multidark (CSD2009-00064). It has also being funded by Generalitat Valenciana, Prometeo/2009/26.Ardid Ramírez, M.; Adrián Martínez, S.; Bou Cabo, M.; Larosa, G.; Martínez Mora, JA.; Espinosa Roselló, V.; Camarena Femenia, F.... (2012). R&D studies for the development of a compact transmitter able to mimic the acousticsignature of a UHE neutrino interaction. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 662:206-209. https://doi.org/10.1016/j.nima.2010.11.139S20620966

    A Compact Array Transducer for Full Calibration of Underwater Acoustic Detection Neutrino Telescopes

    Full text link
    [EN] KM3NeT, the underwater neutrino telescope in the Mediterranean Sea, is a detector under construction. KM3NeT uses Digital Optical Modules (DOMs) to detect neutrinos but there will be a study about the viability to acoustic detection of neutrinos using mainly the acoustic sensors the telescope has for positioning purposes. For this, it is necessary to calibrate and test the acoustic response of the receivers in the detector to determine the sensitivity to detect the neutrino acoustic signal and discriminate it from the environmental background. In this work, the strategy for the calibration of the sensor system using a compact array using three steps (frequency, directivity and neutrino signal-like) is described. Moreover, some R&D activities and results about the second step (long parametric directive signals) are shown.Financial support of the Spanish Plan Estatal de Investigación, ref. PGC2018-096663-B-C43 (MICINN/FEDER)Ardid Ramírez, M.; Tortosa, DD.; Martínez Mora, JA. (2019). A Compact Array Transducer for Full Calibration of Underwater Acoustic Detection Neutrino Telescopes. IEEE. 591-595. https://doi.org/10.1109/IOTSMS48152.2019.8939244S59159

    Acoustic System Development for Neutrino Underwater Detectors

    Full text link
    The main objective of this research is the design and development of two different underwater acoustic emitters aimed to the deep-sea KM3NeT neutrino telescope, more specifically for the Acoustic Positioning System (APS) and for the calibration of the acoustic neutrino detection technique. The KM3NeT project is a new optical-based deep-sea neutrino telescope, currently under construction. The main objectives of the KM3NeT telescope are the discovery and observation of high-energy neutrino sources in the Universe and the determination of the mass hierarchy of neutrinos. The KM3NeT detectors consist of three-dimensional arrays of light sensor modules distributed over large volumes of the transparent water in the deep Mediterranean Sea. The sensor modules register the time of arrival of the light and the brightness of the light to reconstruct the direction and energy of the neutrino. In order to achieve an accurate deployment of the mechanical structures and a precise reconstruction of neutrino induced events, the telescope includes an APS as mandatory sub-system that provides an accurate position of the mechanical structures in real time. Additionally, the APS could also be an excellent tool to study the feasibility of an acoustic neutrino detector and a possible correlation between acoustic and optical signals. The new detector KM3NeT is an excellent opportunity to continue with the study of the acoustic neutrino detection. The acoustic detection would allow the combination of the two neutrino detection techniques for a hybrid underwater neutrino telescope, especially considering that the optical based telescope needs acoustic sensors to monitor the position of the sensors. An Acoustic Beacon (AB) as part of the APS of KM3NeT has been developed in this thesis. Previously, the first emitter prototype was developed and it was installed in previous neutrino telescopes, such as ANTARES and NEMO, in order to be tested in situ. The analyses of the in situ test with the prototypes were performed as part of this thesis. The results obtained from the tests showed that the requirements for the positioning system are accomplished, just needing few improvements for the final version. The final version of the AB is composed by a piezo-ceramic transducer and an electronic board integrated in a single piece in a cylindrical hard-anodized aluminium vessel. The design and the work done for a precise laboratory test was performed achieving optimal results in all aspects As second main work performed in this thesis, a parametric transducer array able to mimic the acoustic signal generated by Ultra-High Energy (UHE) neutrino interaction in water was designed and developed. The first part was designing a single transducer able to emit parametrically the acoustic neutrino signal. Afterwards, the design of the complete array system composed of few units was performed in order to achieve a more energetic and directional bipolar pulse.El objetivo principal de esta investigación es el diseño y desarrollo de dos tipos de emisores acústicos diferentes para ser utilizados en el telescopio submarino de neutrinos KM3NeT, en concreto, uno como emisor en el sistema de posicionamiento acústico (APS) y otro para la calibración de la detección acústica de neutrinos. El proyecto KM3NeT es un telescopio óptico de neutrinos, que actualmente está en fase de construcción, y está ubicado en las profundidades del mar. Los objetivos principales del telescopio son el descubrimiento y la observación de las fuentes que originan los neutrinos de alta energía en el universo y la determinación de la jerarquía de masas de los neutrinos. Los detectores de KM3NeT consisten en conjuntos tridimensionales de módulos de sensores de luz distribuidos en grandes volúmenes de agua en las profundidades del mar Mediterráneo. Los módulos de sensores ópticos registran el tiempo de llegada de la luz y el brillo de la luz para reconstruir la dirección y la energía del neutrino. Con objeto de lograr una implementación correcta de las estructuras mecánicas y una reconstrucción precisa de los eventos del neutrino, el telescopio incluye el APS como subsistema necesario para proporcionar la posición exacta de las estructuras mecánicas en tiempo real. Además, el APS puede ser una herramienta excelente para estudiar la viabilidad de un detector de neutrinos acústico y de una posible correlación entre la señal acústica y óptica. El nuevo detector KM3NeT es una oportunidad para continuar con el estudio de detección acústica de neutrinos. La detección acústica permitiría la combinación de las dos técnicas de detección de neutrinos para un telescopio submarino de neutrinos híbrido, y más aún, teniendo en cuenta que el telescopio óptico necesita de sensores acústicos para monitorizar la posición de los sensores. En esta tesis, por un lado, se ha desarrollado un emisor acústico (AB) como parte del APS de KM3NeT. Previamente, se desarrolló el primer prototipo del emisor acústico, el cual se instaló en anteriores telescopios de neutrinos, concretamente en ANTARES y NEMO, con el fin de comprobar su funcionamiento in situ. Como parte de la tesis, se realizaron los análisis de las pruebas in situ y los resultados obtenidos mostraron que cumplía los requisitos del sistema de posicionamiento, únicamente se necesitaron algunas mejoras para la versión final. La versión final del AB está compuesta por un transductor piezo-cerámico y una placa electrónica integrado en una sola pieza en un recipiente cilíndrico de aluminio anodizado. El diseño y el trabajo realizado para una calibración precisa de laboratorio se llevó a cabo, logrando resultados óptimos en todos los aspectos requeridos. El segundo trabajo principal desarrollado en esta tesis consistió en el diseño de un array paramétrico de transductores capaz de imitar la señal acústica generada por la interacción del neutrino de ultra-alta energía (UHE) en el agua. La primera parte de su diseño se centró en el desarrollo de un transductor individual capaz de emitir paramétricamente la señal acústica del neutrino. Posteriormente, se realizó el diseño del array completo compuesto por varias unidades del transductor diseñado, con el objeto de lograr un pulso bipolar más enérgico y directivo.L'objectiu principal d'esta investigació és el disseny i desenvolupament de dos tipus d'emissors acústics diferents per a ser utilitzats en el telescopi submarí de neutrins KM3NET, en concret, ú com emissor en el sistema de posicionament acústic (APS) i altre per a la calibració de la detecció acústica de neutrins. El projecte KM3NET és un telescopi òptic de neutrins, que actualment està en fase de construcció, i està ubicat en les profunditats del mar. Els objectius principals del telescopi són el descobriment i l'observació de les fonts que originen els neutrins d'alta energia en l'univers i la determinació de la jerarquia de masses dels neutrins. Els detectors de KM3NET consisteixen en conjunts tridimensionals de mòduls de sensors de llum distribuïts en gran volums d'aigua en el Mediterrani. Els mòduls de sensors òptics registren el temps d'aplegada de la llum i la intensitat de la llum per a reconstruir la direcció i l'energia del neutrí. Com objectiu d'aconseguir una implementació correcta de les estructures mecàniques i una reconstrucció precisa dels events del neutrí, el telescopi inclou l'APS com subsistema necessari per a proporcionar la posició exacta de les estructures mecàniques en temps real. A mes, l'APS pot ser una ferramenta excel¿lent per a estudiar la viabilitat d'un detector de neutrins acústic i d'una possible correlació entre el senyal acústic i òptic. El nou detector KM3NET és una oportunitat per a continuar en l'estudi de detecció acústica del neutrí. La detecció acústica permetria la combinació de les dos tècniques de detecció de neutrins per a un telescopi submarí de neutrins híbrid, i més encara, tenint en compte que el telescopi òptic necessita de sensors acústics per a monitoritzar la posició dels sensors. En aquesta tesis, per un costat, s'ha dissenyat un emissor acústic (AB) com part de l'APS de KM3NET. Prèviament, se desenvolupà el primer prototip de l'emissor acústic, el qual s'instal¿là en anteriors telescopis de neutrins, concretament en ANTARES i NEMO, amb el fi de comprovar-se el seu funcionament in situ. Com part de la tesis, es realitzaren els anàlisis de les proves in situ i els resultats obtinguts mostraren que complia els requisits del sistema de posicionament, únicament necessitant-se d'algunes millores per a la versió final. La versió final de l'AB està composta per un transductor piezo-ceràmic i una placa electrònica integrats en una sola peça en un recipient cilíndric d'alumini anoditzat. El disseny i el treball realitzat per a una calibració precisa de laboratori es va dur a terme, aconseguint resultats òptims en tots els aspectes requerits. Com segon treball principal desenvolupat en esta tesis, s'ha dissenyat un array paramètric de transductors capaç d'imitar el senyal acústic generat per l'interacció del neutrí d'ultra-alta energia (UHE) en l'aigua. La primera part de disseny es centrà en el desenvolupament d'un transductor individual capaç d'emetre paramètricament el senyal acústic del neutrí. Posteriorment, es va realitzar el disseny de l'array complet compost per varies unitats del transductor dissenyat, amb l'objectiu d'aconseguir un pols bipolar més energètic i directiu.Saldaña Coscollar, M. (2017). Acoustic System Development for Neutrino Underwater Detectors [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/85981TESI

    Study of acoustic signals for the neutrino detector AMADEUS-ANTARES

    Full text link
    Este proyecto estudia aspectos acústicos pertenecientes al proyecto europeo ANTARES. Por una parte, se centra en el análisis de las señales acústicas recibidas en el sistema de posicionamiento AMADEUS-ANTARES. El programa analiza las señales captadas por los sensores, las analiza de manera individual, aplicando una serie de filtros y transformaciones, extrayendo, la frecuencia, fase y amplitud propia de la señal. A continuación, fija el tiempo de subida y de bajada apropiado para la señal, con el que se obtiene su duración. La aplicación es diseñada con objetivo de automatizar la detección y análisis de las señales recibidas del sistema, consiguiendo mayor precisión en la reconstrucción del posicionamiento de fuentes. Por otra parte, se lleva a cabo el diseño y calibración de un array lineal de ocho hidrófonos que genera, de manera artificial, el pulso bipolar de energía ultra alta generado por el neutrino en su interacción con el agua. El objetivo del array es transmitir al detector acústico de ANTARES la señal bipolar con similares características en amplitud, forma y directividad a la señal acústica creada por el neutrino en el agua. La calibración es desarrollada combinando métodos de procesado de señal junto con medidas experimentales. El array de hidrófonos es posicionado coherentemente en fase, a distancias conocidas. Aplicado el "delay" correspondiente, la señal acústica bipolar es obtenida con mayor amplitud y directividad. La simulación del array acústico es estudiada con el objetivo de conocer la longitud y diseño idóneo para la correcta transmisión de la señal bipolar hasta el detector. This academic work study acoustic aspects of the ANTARES detector European project. For the one hand, the signal analysis processing for the acoustic signals received by the AMADEUS-ANTARES. The software developed analyses the received signal of each sensor and analyses them individually, applying specific filters and transformations in the frequency and time domain, getting the phase, frequency and amplitude belonged to the signal. For the next step, it fixes the Rise Time and Fall Time appropriated for the signal what with is obtained the signal duration. The application is developed for automating the detection and analysis of the received signals from the positioning system, achieving higher accuracy. For the other hand, an eight lineal array hydrophone is designed and calibrated for generate the artificial Ultra High Energy (UHE) neutrino-induced pulses. The array goal is the transmission of the bipolar acoustic signal pulse mimicking (simulating) the neutrino acoustic signal in terms of amplitude, shape and directivity to the ANTARES detector. The calibration is developed using signal processing methods within experimental measures. The array hydrophone is located coherently in phase with known distances. Hence, the delay between them is applied to get a higher amplitude and directivity acoustic bipolar pulse. The acoustic array simulation is studied in order to know the length and design for the proper bipolar signal transmission to the detector.Saldaña Coscollar, M. (2011). Study of acoustic signals for the neutrino detector AMADEUS-ANTARES. Universitat Politècnica de València. http://hdl.handle.net/10251/14132Archivo delegad

    Advanced signal processing techniques for underwater acoustic transmission using steerable transducer arrays

    Get PDF
    The main objective of this research is to design and implement an eight-hydrophone transmitter array for generating bipolar acoustic pulses mimicking those produced by cosmogenic neutrino interaction in sea water. In addition, the research was conducted as part of the ACoRNE collaboration. The work initially investigated a single hydrophone system. Due to the nature of hydrophone, the acoustic output signal does not precisely follow a given driving voltage input. Hence signal processing techniques and hydrophone modelling were applied. A bipolar acoustic generation module was built using 8-bit PIC microcontrollers for processing and control. A NI USB-6211 National Instruments commercial module was used for validation of results. The modelling was compared to experimental data generated in a water tank, showing excellent agreement. This single hydrophone instrument was deployed at the Rona array in 2008. Both 10 kHz and 23 kHz pulses were injected, whilst seven hydrophones at Rona site were chosen as the receiver hydrophone array. Signal processing techniques were applied to identify these pulses. The result showed that the triggered pulses can be detected and identified at Rona over a distance of a few hundred metres. A model for an eight-hydrophone transmission linear array system for the ANTARES site was developed. The simulation showed that the eight hydrophones arranged over an eight-metre spacing structure can mimic the anticipated pancake behaviour predicted from neutrino-induced showers as well as generating the acoustic bipolar pulse shape of sufficient amplitude for detection at ANTARES. An eight-channel arbitrary waveform generator module was designed and built using 16-bit dsPIC microcontrollers. Signal Processing techniques were again applied to calibrate the hydrophone transmitter array. The behaviour of an acoustic transducer array was examined in a laboratory water tank to study the shape and direction of such a signal in water. The results were validated against a PXI-6713 commercial module. Excellent agreement was achieved. Finally, the system was deployed at the ANTARES site in September 2011. A range of test signals including 23 kHz bipolar pulses, sine signals and orthogonal signals were injected into seawater to simulate neutrino interactions and investigate signal coding. Signal processing techniques were applied to the data deployed in order to recognise the signals emitted. However, the vessel was far away from the position planned (c 1km), hence the signal received was too weak and no signal was detected. However, the deployed data is still very useful in order to study the noise background of seawater and much has been learned for future sea campaigns

    A compact array calibrator to study the feasibility of acoustic neutrino detection

    Full text link
    [EN] Underwater acoustic detection of ultra-high-energy neutrinos was proposed already in 1950s: when a neutrino interacts with a nucleus in water, the resulting particle cascade produces a pressure pulse that has a bipolar temporal structure and propagates within a flat disk-like volume. A telescope that consists of thousands of acoustic sensors deployed in the deep sea can monitor hundreds of cubic kilometres of water looking for these signals and discriminating them from acoustic noise. To study the feasibility of the technique it is critical to have a calibrator able to mimic the neutrino signature that can be operated from a vessel. Due to the axial-symmetry of the signal, their very directive short bipolar shape and the constraints of operating at sea, the development of such a calibrator is very challenging. Once the possibility of using the acoustic parametric technique for this aim was validated with the first compact array calibrator prototype, in this paper we describe the new design for such a calibrator composed of an array of piezo ceramic tube transducers emitting in axial direction.We acknowledge the financial support of the Spanish Ministerio de Economía y Competitividad, Grants FPA2012-37528-C02-02, and Consolider MultiDark CSD2009-00064, of the Generalitat Valenciana, Grants ACOMP/2015/175 PrometeoII/2014/079 and of the European FEDER funds.Ardid Ramírez, M.; Camarena Femenia, F.; Felis-Enguix, I.; Herrero Debón, A.; Llorens Alvarez, CD.; Martínez Mora, JA.; Saldaña-Coscollar, M. (2016). A compact array calibrator to study the feasibility of acoustic neutrino detection. EPJ Web of Conferences. 116(03001):1-4. https://doi.org/10.1051/epjconf/201611603001S141160300

    Acoustic parametric techniques for neutrino telescopes

    Get PDF
    [EN] In this work, we present a compact transmitter array based on the parametric acoustic sources effect able to reproduce the acoustic signature of an Ultra-High Energy neutrino interaction in water. We also propose to use directive transducers using the parametric technique for the characterization of piezo-ceramic sensors contained in the KM3NeT DOMs. This technique can minimize the need for an anechoic tank.Ardid Ramírez, M.; Tortosa, DD.; Llorens Alvarez, CD.; Martínez Mora, JA.; Saldaña-Coscollar, M. (2019). Acoustic parametric techniques for neutrino telescopes. EPJ Web of Conferences (Online). 216:1-3. https://doi.org/10.1051/epjconf/201921604001S13216Saldana M., PhD Thesis, Acoustic System Development for Neutrino Underwater Detectors. Gandia: Universitat Politecnica de Valencia (2017)Buis E.J.; et al. Characterization of the KM3NeT hydrophone. ARENA2018 this issue
    • …
    corecore