1,595 research outputs found

    Isotropic properties of the photonic band gap in quasicrystals with low-index contrast

    Full text link
    We report on the formation and development of the photonic band gap in two-dimensional 8-, 10- and 12-fold symmetry quasicrystalline lattices of low index contrast. Finite size structures made of dielectric cylindrical rods were studied and measured in the microwave region, and their properties compared with a conventional hexagonal crystal. Band gap characteristics were investigated by changing the direction of propagation of the incident beam inside the crystal. Various angles of incidence from 0 \degree to 30\degree were used in order to investigate the isotropic nature of the band gap. The arbitrarily high rotational symmetry of aperiodically ordered structures could be practically exploited to manufacture isotropic band gap materials, which are perfectly suitable for hosting waveguides or cavities.Comment: 16 pages, 7 figures, submitted to PR

    Coverage, Continuity and Visual Cortical Architecture

    Get PDF
    The primary visual cortex of many mammals contains a continuous representation of visual space, with a roughly repetitive aperiodic map of orientation preferences superimposed. It was recently found that orientation preference maps (OPMs) obey statistical laws which are apparently invariant among species widely separated in eutherian evolution. Here, we examine whether one of the most prominent models for the optimization of cortical maps, the elastic net (EN) model, can reproduce this common design. The EN model generates representations which optimally trade of stimulus space coverage and map continuity. While this model has been used in numerous studies, no analytical results about the precise layout of the predicted OPMs have been obtained so far. We present a mathematical approach to analytically calculate the cortical representations predicted by the EN model for the joint mapping of stimulus position and orientation. We find that in all previously studied regimes, predicted OPM layouts are perfectly periodic. An unbiased search through the EN parameter space identifies a novel regime of aperiodic OPMs with pinwheel densities lower than found in experiments. In an extreme limit, aperiodic OPMs quantitatively resembling experimental observations emerge. Stabilization of these layouts results from strong nonlocal interactions rather than from a coverage-continuity-compromise. Our results demonstrate that optimization models for stimulus representations dominated by nonlocal suppressive interactions are in principle capable of correctly predicting the common OPM design. They question that visual cortical feature representations can be explained by a coverage-continuity-compromise.Comment: 100 pages, including an Appendix, 21 + 7 figure

    Numerical Methods for Quasicrystals

    Full text link
    Quasicrystals are one kind of space-filling structures. The traditional crystalline approximant method utilizes periodic structures to approximate quasicrystals. The errors of this approach come from two parts: the numerical discretization, and the approximate error of Simultaneous Diophantine Approximation which also determines the size of the domain necessary for accurate solution. As the approximate error decreases, the computational complexity grows rapidly, and moreover, the approximate error always exits unless the computational region is the full space. In this work we focus on the development of numerical method to compute quasicrystals with high accuracy. With the help of higher-dimensional reciprocal space, a new projection method is developed to compute quasicrystals. The approach enables us to calculate quasicrystals rather than crystalline approximants. Compared with the crystalline approximant method, the projection method overcomes the restrictions of the Simultaneous Diophantine Approximation, and can also use periodic boundary conditions conveniently. Meanwhile, the proposed method efficiently reduces the computational complexity through implementing in a unit cell and using pseudospectral method. For illustrative purpose we work with the Lifshitz-Petrich model, though our present algorithm will apply to more general systems including quasicrystals. We find that the projection method can maintain the rotational symmetry accurately. More significantly, the algorithm can calculate the free energy density to high precision.Comment: 27 pages, 8 figures, 6 table

    Design of crystal-like aperiodic solids with selective disorder--phonon coupling

    Get PDF
    Functional materials design normally focuses on structurally-ordered systems because disorder is considered detrimental to many important physical properties. Here we challenge this paradigm by showing that particular types of strongly-correlated disorder can give rise to useful characteristics that are inaccessible to ordered states. A judicious combination of low-symmetry building unit and high-symmetry topological template leads to aperiodic "procrystalline" solids that harbour this type of topological disorder. We identify key classes of procrystalline states together with their characteristic diffraction behaviour, and establish a variety of mappings onto known and target materials. Crucially, the strongly-correlated disorder we consider is associated with specific sets of modulation periodicities distributed throughout the Brillouin zone. Lattice dynamical calculations reveal selective disorder-phonon coupling to lattice vibrations characterised by these same periodicities. The principal effect on the phonon spectrum is to bring about dispersion in energy rather than wave-vector, as in the poorly-understood "waterfall" effect observed in relaxor ferroelectrics. This property of procrystalline solids suggests a mechanism by which strongly-correlated topological disorder might allow new and useful functionalities, including independently-optimised thermal and electronic transport behaviour as required for high-performance thermoelectrics.Comment: 4 figure

    Computation and visualization of photonic quasicrystal spectra via Blochs theorem

    Full text link
    Previous methods for determining photonic quasicrystal (PQC) spectra have relied on the use of large supercells to compute the eigenfrequencies and/or local density of states (LDOS). In this manuscript, we present a method by which the energy spectrum and the eigenstates of a PQC can be obtained by solving Maxwells equations in higher dimensions for any PQC defined by the standard cut-and-project construction, to which a generalization of Blochs theorem applies. In addition, we demonstrate how one can compute band structures with defect states in the higher-dimensional superspace with no additional computational cost. As a proof of concept, these general ideas are demonstrated for the simple case of one-dimensional quasicrystals, which can also be solved by simple transfer-matrix techniques.Comment: Published in Physical Review B, 77 104201, 200

    Local symmetries and perfect transmission in aperiodic photonic multilayers

    Get PDF
    We develop a classification of perfectly transmitting resonances occuring in effectively one-dimensional optical media which are decomposable into locally reflection symmetric parts. The local symmetries of the medium are shown to yield piecewise translation-invariant quantities, which are used to distinguish resonances with arbitrary field profile from resonances following the medium symmetries. Focusing on light scattering in aperiodic multilayer structures, we demonstrate this classification for representative setups, providing insight into the origin of perfect transmission. We further show how local symmetries can be utilized for the design of optical devices with perfect transmission at prescribed energies. Providing a link between resonant scattering and local symmetries of the underlying medium, the proposed approach may contribute to the understanding of optical response in complex systems.Comment: 8 pages, 4 figure

    Extinctions and Correlations for Uniformly Discrete Point Processes with Pure Point Dynamical Spectra

    Full text link
    The paper investigates how correlations can completely specify a uniformly discrete point process. The setting is that of uniformly discrete point sets in real space for which the corresponding dynamical hull is ergodic. The first result is that all of the essential physical information in such a system is derivable from its nn-point correlations, n=2,3,>...n= 2, 3, >.... If the system is pure point diffractive an upper bound on the number of correlations required can be derived from the cycle structure of a graph formed from the dynamical and Bragg spectra. In particular, if the diffraction has no extinctions, then the 2 and 3 point correlations contain all the relevant information.Comment: 16 page

    Hybrid photonic-bandgap accelerating cavities

    Full text link
    In a recent investigation, we studied two-dimensional point-defected photonic bandgap cavities composed of dielectric rods arranged according to various representative periodic and aperiodic lattices, with special emphasis on possible applications to particle acceleration (along the longitudinal axis). In this paper, we present a new study aimed at highlighting the possible advantages of using hybrid structures based on the above dielectric configurations, but featuring metallic rods in the outermost regions, for the design of extremely-high quality factor, bandgap-based, accelerating resonators. In this framework, we consider diverse configurations, with different (periodic and aperiodic) lattice geometries, sizes, and dielectric/metal fractions. Moreover, we also explore possible improvements attainable via the use of superconducting plates to confine the electromagnetic field in the longitudinal direction. Results from our comparative studies, based on numerical full-wave simulations backed by experimental validations (at room and cryogenic temperatures) in the microwave region, identify the candidate parametric configurations capable of yielding the highest quality factor.Comment: 13 pages, 5 figures, 3 tables. One figure and one reference added; minor changes in the tex
    • 

    corecore