121,686 research outputs found

    Effect of Neural Network on Reduction of Noise for Edge Detection

    Get PDF
    Processing photographic images is important in many applications, among them the development of automated driver assistance systems (ADAS) and autonomous vehicles. Many techniques are used for processing images, including neural networks, other types of machine learning, and edge detection. One common issue with processing these photos is the presence of noise, whether caused by the camera itself or by physical conditions (e.g., weather conditions or dirt on road signs). In this paper, a neural network is used for noise reduction to improve edge detection results and tested with two kinds of noise, Gaussian and salt & pepper noise, and three different edge detection algorithms, Canny, Sobel, and Zhang. Results showed that the noise reduction process was effective in improving performance of the edge detection process, with the exception of conditions where the noise was originally very minimal

    Use of artificial neuralnetwork for modeling of pollutent

    Get PDF
    Artificial Neural Networks (ANN) is implemented for predicting air quality. The models, in general, could predict air quality patterns with modest accuracy However, ANNM model performed extremely well in comparison to other models for predicting annual data as well as daily data. Industry emits small amounts of nitrogen oxides to the environment. As the regulatory authorities demand the reduction of the resulting air pollution, existing plants are looking for economical ways to comply with this demand. Several Artificial Neural Networks models were trained from several months of operating plant data to predict the NOx concentration in the tail gas, and their total amount emitted the environment. This paper describes the development of artificial neural network-based vehicular exhaust emission & industrial models for predicting carbon monoxide concentrations at air quality control regions in the city of Raipur, India, viz. a typical traffic intersection.Which can work with limited number of data sets and are robust enough to handle data with noise and errors.The Artificial Neural Networks models gave small errors, 0.6% relative error on the nitrogen oxides concentration prediction. Thenitrogen oxides emission rate, especially the beneficial effect of cooling the absorbed gas and reticulating liquids in the absorption towers

    SIRENA: A CAD environment for behavioural modelling and simulation of VLSI cellular neural network chips

    Get PDF
    This paper presents SIRENA, a CAD environment for the simulation and modelling of mixed-signal VLSI parallel processing chips based on cellular neural networks. SIRENA includes capabilities for: (a) the description of nominal and non-ideal operation of CNN analogue circuitry at the behavioural level; (b) performing realistic simulations of the transient evolution of physical CNNs including deviations due to second-order effects of the hardware; and, (c) evaluating sensitivity figures, and realize noise and Monte Carlo simulations in the time domain. These capabilities portray SIRENA as better suited for CNN chip development than algorithmic simulation packages (such as OpenSimulator, Sesame) or conventional neural networks simulators (RCS, GENESIS, SFINX), which are not oriented to the evaluation of hardware non-idealities. As compared to conventional electrical simulators (such as HSPICE or ELDO-FAS), SIRENA provides easier modelling of the hardware parasitics, a significant reduction in computation time, and similar accuracy levels. Consequently, iteration during the design procedure becomes possible, supporting decision making regarding design strategies and dimensioning. SIRENA has been developed using object-oriented programming techniques in C, and currently runs under the UNIX operating system and X-Windows framework. It employs a dedicated high-level hardware description language: DECEL, fitted to the description of non-idealities arising in CNN hardware. This language has been developed aiming generality, in the sense of making no restrictions on the network models that can be implemented. SIRENA is highly modular and composed of independent tools. This simplifies future expansions and improvements.Comisión Interministerial de Ciencia y Tecnología TIC96-1392-C02-0

    Speech enhancement using deep learning

    Get PDF
    This thesis explores the possibility to achieve enhancement on noisy speech signals using Deep Neural Networks. Signal enhancement is a classic problem in speech processing. In the last years, researches using deep learning has been used in many speech processing tasks since they have provided very satisfactory results. As a first step, a Signal Analysis Module has been implemented in order to calculate the magnitude and phase of each audio file in the database. The signal is represented into its magnitude and its phase, where the magnitude is modified by the neural network, and then it is reconstructed with the original phase. The implementation of the Neural Networks is divided into two stages.The first stage was the implementation of a Speech Activity Detection Deep Neural Network (SAD-DNN). The magnitude previously calculated, applied to the noisy data, will train the SAD-DNN in order to classify each frame in speech or non-speech. This classification is useful for the network that does the final cleaning. The Speech Activity Detection Deep Neural Network is followed by a Denoising Auto-Encoder (DAE). The magnitude and the label speech or non-speech will be the input of this second Deep Neural Network in charge of denoising the speech signal. The first stage is also optimized to be adequate for the final task in this second stage. In order to do the training, Neural Networks require datasets. In this project the Timit corpus [9] has been used as dataset for the clean voice (target) and the QUT-NOISE TIMIT corpus[4] as noisy dataset (source). Finally, Signal Synthesis Module reconstructs the clean speech signal from the enhanced magnitudes and the phase. In the end, the results provided by the system have been analysed using both objective and subjective measures.Esta tesis explora la posibilidad de conseguir mejorar señales de voz con ruido utilizando Redes Neuronales Profundas. La mejora de señales es un problema clásico del procesado de señal, pero recientemente se esta investigando con deep learning, ya que son técnicas que han dado resultados muy satisfactorios en muchas tareas del procesado de señal. Como primer paso, se ha implementado un Módulo de Análisis de Señal con el objetivo de extraer el módulo y fase de cada archivo de voz de la base de datos. La señal se representa en módulo y fase, donde el módulo se modifica con la red neuronal y posteriormente se reconstruye con la fase original. La implementación de la Red Neuronal consta de dos etapas. En la primera etapa se implementó una Red Neuronal de Detección de Actividad de Voz. El módulo previamente calculado, aplicado a los datos con ruido, se utiliza como entrada para entrenar esta red, de manera que se consigue clasificar cada trama en voz o no voz. Esta clasificación es útil para la red que se encarga de hacer la limpieza. A continuación de la Red Neuronal de Detección de Actividad de Voz se implementa otra, con el objetivo de eliminar el ruido. El módulo junto con la etiqueta obtenida en la red anterior serán la entrada de esta nueva red. En esta segunda etapa también se optimiza la primera para adaptarse a la tarea final. Las Redes Neuronales requieren bases de datos para el entrenamiento. En este proyecto se ha utilizado el Timit corpus [9] como base de datos de voz limpia (objetivo) y el QUT-NOISE TIMIT [4] como base de datos con ruido (fuente). A continuación, el Módulo de Síntesis de Señal reconstruye la señal de voz limpia a partir del módulo sin ruido y la fase original.Aquesta tesis explora la possibilitat d'aconseguir millorar senyals de veu amb soroll, utilitzant Xarxes Neuronals Profundes. La millora de senyals és un problema clàssic del processat de senyal, però recentment s'està investigant amb deep learning, ja que són tècniques que han donat resultats molt satisfactoris en moltes tasques de processament de veu. Com a primer pas, s'ha implementat un Mòdul d'Anàlisi de Senyal amb l'objectiu d'extreure el mòdul i la fase de cada arxiu d'àudio de la base de dades. El senyal es representa en mòdul i fase, on el mòdul es modifica amb la xarxa neuronal i posteriorment es reconstrueix amb la fase original. La implementació de les Xarxes Neuronals consta de dues etapes. En la primera etapa es va implementar una Xarxa Neuronal de Detecció d'Activitat de Veu. El mòdul prèviament calculat, aplicat a les dades amb soroll, s'utilitza com entrada per entrenar aquesta xarxa, de manera que s'aconsegueix classificar cada trama en veu o no veu. Aquesta classificació és útil per la xarxa que fa la neteja final. A continuació de la Xarxa Neuronal de Detecció d'Activitat de Veu s'implementa una altra amb l'objectiu d'eliminar el soroll. El mòdul, juntament amb la etiqueta obtinguda en la xarxa anterior, seran l'entrada d'aquesta nova xarxa. En aquesta segona etapa també s'optimitza la primera per adaptar-se a la tasca final. Les Xarxes Neuronals requereixen bases de dades per fer l'entrenament. En aquest projecte s'ha utilitzat el Timit corpus [9] com a base de dades de veu neta (objectiu) i el QUT-NOISE TIMIT[4] com a base de dades amb soroll (font). A continuació, el Mòdul de Síntesi de Senyal reconstrueix el senyal de veu net a partir del mòdul netejat i la fase original. Finalment, els resultats obtinguts del sistema van ser analitzats utilitzant mesures objectives i subjectives

    Power scalable implementation of artificial neural networks

    No full text
    As the use of Artificial Neural Network (ANN) in mobile embedded devices gets more pervasive, power consumption of ANN hardware is becoming a major limiting factor. Although considerable research efforts are now directed towards low-power implementations of ANN, the issue of dynamic power scalability of the implemented design has been largely overlooked. In this paper, we discuss the motivation and basic principles for implementing power scaling in ANN Hardware. With the help of a simple example, we demonstrate how power scaling can be achieved with dynamic pruning techniques

    A Model of an Oscillatory Neural Network with Multilevel Neurons for Pattern Recognition and Computing

    Full text link
    The current study uses a novel method of multilevel neurons and high order synchronization effects described by a family of special metrics, for pattern recognition in an oscillatory neural network (ONN). The output oscillator (neuron) of the network has multilevel variations in its synchronization value with the reference oscillator, and allows classification of an input pattern into a set of classes. The ONN model is implemented on thermally-coupled vanadium dioxide oscillators. The ONN is trained by the simulated annealing algorithm for selection of the network parameters. The results demonstrate that ONN is capable of classifying 512 visual patterns (as a cell array 3 * 3, distributed by symmetry into 102 classes) into a set of classes with a maximum number of elements up to fourteen. The classification capability of the network depends on the interior noise level and synchronization effectiveness parameter. The model allows for designing multilevel output cascades of neural networks with high net data throughput. The presented method can be applied in ONNs with various coupling mechanisms and oscillator topology.Comment: 26 pages, 24 figure
    corecore