170 research outputs found

    Resilience Science for a Resilient Society in Natural Disaster Prone Countries

    Get PDF
    Recently, many destructive natural disasters occurred in the world. Therefore, the damage reductions and disaster mitigation for resilient society are very important and significant. For the implementation of these issues, we propose the resilience science including science, engineering, medicine, and social science. In social science, there are sociology, economics, psychology, law, pedagogy, etc. After 2011 earthquake in East Japan in which severe tsunami damages in a broad area occurred, the reconstruction and restoration activities in each area have been done; however, the progress speeds are not so rapid generally. One of reasons in which delayed reconstruction and restoration occurred is the shortage of pre-recovery plan and concept of future community in each area. In this chapter, we propose the resilience science for resilient society. The resilience science is based on multidisciplinary research fields, and the resilient society is defined as the society equipped with redundancy, robustness, elasticity, and safety. Especially, human resource cultivation is very important in resilience science for the resilient society. For the bright future, the resilience science for the resilient society based on human resource cultivation is indispensable

    Probabilistic tsunami hazard assessment based on the Gutenberg–Richter law in eastern Shikoku, Nankai subduction zone, Japan

    Get PDF
    Earthquake and tsunami predictions comprise huge uncertainties, thus necessitating probabilistic assessments for the design of defense facilities and urban planning. In recent years, computer development has advanced probabilistic tsunami hazard assessments (PTHAs), where hazard curves show the exceedance probability of the maximum tsunami height. However, owing to the lack of historical and geological tsunami records, this method is generally insufficient for validating the estimated hazard curves. The eastern coast of Shikoku in the Nankai subduction zone, Japan, is suitable for validation because tsunami records from historical Nankai Trough earthquakes are available. This study evaluated PTHAs by comparing the tsunami hazard curves and exceedance frequencies of historical Nankai Trough tsunamis. We considered 3480 earthquake scenarios representing the rupture patterns of past Nankai earthquakes and calculated all tsunamis. The probability of earthquake occurrence was based on the Gutenberg–Richter law. We considered uncertainty in tsunami calculations with astronomical tide variations. The estimated tsunami hazard curves are consistent with the exceedance frequencies obtained from historical tsunamis. In addition, sensitivity tests indicate the significance of the earthquake slip heterogeneity and tsunami defense facilities in PTHAs. We also extended the PTHAs to tsunami inundation maps in high resolution and proposed an effective new method for reducing the tsunami computation load

    東シナ海における津波伝播および浸水数値シミュレーション

    Get PDF
    東京海洋大学修士学位論文 平成28年度(2016) 海洋システム工学 第2599号指導教員: 岡安章夫全文公表年月日: 2019-04-16東京海洋大学201

    Numerical experiments on tsunami flow depth prediction for clustered areas using regression and machine learning models

    Get PDF
    Emergency responses during a massive tsunami disaster require information on the flow depth of land for rescue operations. This study aims to predict tsunami flow depth distribution in real time using regression and machine learning. Training data of 3480 earthquake-induced tsunamis in the Nankai Trough were constructed by numerical simulations. Initially, the k-means method was used to discriminate the areas with approximately the same flow depth. The number of clustered areas was 18, and the standard deviation of the flow depth data in a cluster was 0.46 m on average. The objective variables were the mean and standard deviation of the flow depth in the clustered areas. The explanatory variables were the maximum deviation of the water pressure at the seafloor observation points of the DONET observatory. We generated multiple regression equations for a power law using these datasets and the conjugate gradient method. Further, we employed the multilayer perceptron method, a machine learning technique, to evaluate the prediction performance. Both methods accurately predicted the tsunami flow depth calculated by testing 11 earthquake scenarios in the cabinet office of the government of Japan. The RMSE between the predicted and the true (via forward tsunami calculations) values of the mean flow depth ranged from 0.34–1.08 m. In addition to large-scale tsunami prediction systems, prediction methods with a robust and light computational load as used in this study are essential to prepare for unforeseen situations during large-scale earthquakes and tsunami disasters

    A review on slow earthquakes in the Japan Trench

    Get PDF
    Slow earthquakes are episodic slow fault slips. They form a fundamental component of interplate deformation processes, along with fast, regular earthquakes. Recent seismological and geodetic observations have revealed detailed slow earthquake activity along the Japan Trench—the subduction zone where the March 11, 2011, moment magnitude (Mw) 9.0 Tohoku-Oki earthquake occurred. In this paper, we review observational, experimental, and simulation studies on slow earthquakes along the Japan Trench and their research history. By compiling the observations of slow earthquakes (e.g., tectonic tremors, very-low-frequency earthquakes, and slow slip events) and related fault slip phenomena (e.g., small repeating earthquakes, earthquake swarms, and foreshocks of large interplate earthquakes), we present an integrated slow earthquake distribution along the Japan Trench. Slow and megathrust earthquakes are spatially complementary in distribution, and slow earthquakes sometimes trigger fast earthquakes in their vicinities. An approximately 200-km-long along-strike gap of seismic slow earthquakes (i.e., tectonic tremors and very-low-frequency earthquakes) corresponds with the huge interplate locked zone of the central Japan Trench. The Mw 9.0 Tohoku-Oki earthquake ruptured this locked zone, but the rupture terminated without propagating deep into the slow-earthquake-genic regions in the northern and southern Japan Trench. Slow earthquakes are involved in both the rupture initiation and termination processes of megathrust earthquakes in the Japan Trench. We then compared the integrated slow earthquake distribution with the crustal structure of the Japan Trench (e.g., interplate sedimentary units, subducting seamounts, petit-spot volcanoes, horst and graben structures, residual gravity, seismic velocity structure, and plate boundary reflection intensity) and described the geological environment of the slow-earthquake-genic regions (e.g., water sources, pressure–temperature conditions, and metamorphism). The integrated slow earthquake distribution enabled us to comprehensively discuss the role of slow earthquakes in the occurrence process of the Tohoku-Oki earthquake. The correspondences of the slow earthquake distribution with the crustal structure and geological environment provide insights into the slow-earthquake-genesis in the Japan Trench and imply that highly overpressured fluids are key to understanding the complex slow earthquake distribution. Furthermore, we propose that detailed monitoring of slow earthquake activity can improve the forecasts of interplate seismicity along the Japan Trench

    Advances for Tsunami Measurement Technologies and Its Applications

    Get PDF
    corecore