2 research outputs found

    Complexity in forecasting and predictive models

    Get PDF
    Te challenge of this special issue has been to know the state of the problem related to forecasting modeling and the creation of a model to forecast the future behavior that supports decision making by supporting real-world applications. Tis issue has been highlighted by the quality of its research work on the critical importance of advanced analytical methods, such as neural networks, sof computing, evolutionary algorithms, chaotic models, cellular automata, agent-based models, and fnite mixture minimum squares (FIMIX-PLS).info:eu-repo/semantics/publishedVersio

    Development of Multidecomposition Hybrid Model for Hydrological Time Series Analysis

    No full text
    Accurate prediction of hydrological processes is key for optimal allocation of water resources. In this study, two novel hybrid models are developed to improve the prediction precision of hydrological time series data based on the principal of three stages as denoising, decomposition, and decomposed component prediction and summation. The proposed architecture is applied on daily rivers inflow time series data of Indus Basin System. The performances of the proposed models are compared with traditional single-stage model (without denoised and decomposed), the hybrid two-stage model (with denoised), and existing three-stage hybrid model (with denoised and decomposition). Three evaluation measures are used to assess the prediction accuracy of all models such as Mean Relative Error (MRE), Mean Absolute Error (MAE), and Mean Square Error (MSE). The proposed, three-stage hybrid models have shown improvement in prediction accuracy with minimum MRE, MAE, and MSE for all case studies as compared to other existing one-stage and two-stage models. In summary, the accuracy of prediction is improved by reducing the complexity of hydrological time series data by incorporating the denoising and decomposition
    corecore