21,181 research outputs found

    Development of a Java-Based Framework for Aircraft Preliminary Design and Optimization

    Get PDF
    The paper deals with the description of a software tool to be used for aircraft preliminary design and optimization. The software tool, called ADOpT (Aircraft Design and Optimization Tool) has been developed in order to have a fast, reliable and user friendly framework to be used in preliminary/conceptual design phase. The software platform is made to perform fast multi-disciplinary analysis of an established aircraft configuration and search for an optimized configuration in a domain whose boundaries are defined by the user. The software has been conceived to be used in an industrial environment across conceptual and preliminary design phases. The software is still in development at the Department of Industrial Engineering of University of Naples

    Integration of Multifidelity Multidisciplinary Computer Codes for Design and Analysis of Supersonic Aircraft

    Get PDF
    This paper documents the development of a conceptual level integrated process for design and analysis of efficient and environmentally acceptable supersonic aircraft. To overcome the technical challenges to achieve this goal, a conceptual design capability which provides users with the ability to examine the integrated solution between all disciplines and facilitates the application of multidiscipline design, analysis, and optimization on a scale greater than previously achieved, is needed. The described capability is both an interactive design environment as well as a high powered optimization system with a unique blend of low, mixed and high-fidelity engineering tools combined together in the software integration framework, ModelCenter. The various modules are described and capabilities of the system are demonstrated. The current limitations and proposed future enhancements are also discussed

    Comparison of Aircraft Conceptual Design Weight Estimation Methods to the Flight Optimization System

    Get PDF
    Weight estimation is critical in the aircraft conceptual design process. The Flight Optimization System (FLOPS) is an aircraft conceptual design tool that has been the primary aircraft synthesis software used by the Systems Analysis and Concepts Directorate at NASA Langley Research Center. FLOPS includes multiple modules that represent aircraft design disciplines. The FLOPS weight module includes estimation methods that are similar in nature to other regression based aircraft preliminary weight estimation methods, however the FLOPS methods were created to use a minimum number of input parameters to limit the effort required by the designer to apply it. As FLOPS has recently been made publically available, this work compares the FLOPS weight estimation methods with several similar methods with the goal of explaining the differences in FLOPS, providing conceptual designers with a brief introduction to the method before attempting to apply it, and providing a reference to inform the development of future weight estimating relationships. In this paper, the Boeing 737-200 is used as a test case to highlight to differences and similarities in the methods

    Designers' unified cost model

    Get PDF
    The Structures Technology Program Office (STPO) at NASA LaRC has initiated development of a conceptual and preliminary designers' cost prediction model. The model will provide a technically sound method for evaluating the relative cost of different composite structural designs, fabrication processes, and assembly methods that can be compared to equivalent metallic parts or assemblies. The feasibility of developing cost prediction software in a modular form for interfacing with state-of-the-art preliminary design tools and computer aided design programs is being evaluated. The goal of this task is to establish theoretical cost functions that relate geometric design features to summed material cost and labor content in terms of process mechanics and physics. The output of the designers' present analytical tools will be input for the designers' cost prediction model to provide the designer with a database and deterministic cost methodology that allows one to trade and synthesize designs with both cost and weight as objective functions for optimization. This paper presents the team members, approach, goals, plans, and progress to date for development of COSTADE (Cost Optimization Software for Transport Aircraft Design Evaluation)

    Adaptive Modeling, Engineering Analysis and Design of Advanced Aerospace Vehicles

    Get PDF
    This paper describes initial progress towards the development and enhancement of a set of software tools for rapid adaptive modeling, and conceptual design of advanced aerospace vehicle concepts. With demanding structural and aerodynamic performance requirements, these high fidelity geometry based modeling tools are essential for rapid and accurate engineering analysis at the early concept development stage. This adaptive modeling tool was used for generating vehicle parametric geometry, outer mold line and detailed internal structural layout of wing, fuselage, skin, spars, ribs, control surfaces, frames, bulkheads, floors, etc., that facilitated rapid finite element analysis, sizing study and weight optimization. The high quality outer mold line enabled rapid aerodynamic analysis in order to provide reliable design data at critical flight conditions. Example application for structural design of a conventional aircraft and a high altitude long endurance vehicle configuration are presented. This work was performed under the Conceptual Design Shop sub-project within the Efficient Aerodynamic Shape and Integration project, under the former Vehicle Systems Program. The project objective was to design and assess unconventional atmospheric vehicle concepts efficiently and confidently. The implementation may also dramatically facilitate physics-based systems analysis for the NASA Fundamental Aeronautics Mission. In addition to providing technology for design and development of unconventional aircraft, the techniques for generation of accurate geometry and internal sub-structure and the automated interface with the high fidelity analysis codes could also be applied towards the design of vehicles for the NASA Exploration and Space Science Mission projects

    Study of the development and verification of an integrated code for UAV design

    Get PDF
    L'objectiu d'aquest estudi és desenvolupar una eina de disseny d'aeronaus utilitzant algoritmes d'optimització per a facilitar el procés. Es pretén incorporar el codi d'estudi i simulació de les actuacions d'un UAV desenvolupat per l'equip Trencalòs Team en un software de disseny aerodinàmic ja existent, ja sigui XFLR5 o AVL. Les funcions objectiu incorporades seran les que l'equip considera per a la participació en el concurs internacional Air Cargo Challenge, amb la intenció de desenvolupar una eina de treball per a Trencalòs que permeti fer un disseny òptim dins del marc de la competició. El treball es dividirà en tres etapes: 1. Incorporació del codi desenvolupat per Trencalòs al software de disseny aerodinàmic2. Fer ús dels algoritmes d'optimització de funcions objectiu per a facilitar el procés de disseny3. Verificació els resultats obtinguts.

    Set-based approach to passenger aircraft family design

    Get PDF
    Presented is a method for the design of passenger aircraft families. Existing point-based methods found in the literature employ sequential approaches in which a single design solution is selected early and is then iteratively modified until all requirements are satisfied. The challenge with such approaches is that the design is driven toward a solution that, although promising to the optimizer, may be infeasible due to factors not considered by the models. The proposed method generates multiple solutions at the outset. Then, the infeasible solutions are discarded gradually through constraint satisfaction and set intersection. The method has been evaluated through a notional example of a three-member aircraft family design. The conclusion is that point-based design is still seen as preferable for incremental (conventional) designs based on a wealth of validated empirical methods, whereas the proposed approach, although resource-intensive, is seen as more suited to innovative designs

    TiGL - An Open Source Computational Geometry Library for Parametric Aircraft Design

    Get PDF
    This paper introduces the software TiGL: TiGL is an open source high-fidelity geometry modeler that is used in the conceptual and preliminary aircraft and helicopter design phase. It creates full three-dimensional models of aircraft from their parametric CPACS description. Due to its parametric nature, it is typically used for aircraft design analysis and optimization. First, we present the use-case and architecture of TiGL. Then, we discuss it's geometry module, which is used to generate the B-spline based surfaces of the aircraft. The backbone of TiGL is its surface generator for curve network interpolation, based on Gordon surfaces. One major part of this paper explains the mathematical foundation of Gordon surfaces on B-splines and how we achieve the required curve network compatibility. Finally, TiGL's aircraft component module is introduced, which is used to create the external and internal parts of aircraft, such as wings, flaps, fuselages, engines or structural elements

    Aerated blast furnace slag filters for enhanced nitrogen and phosphorus removal from small wastewater treatment plants

    Get PDF
    Rock filters (RF) are a promising alternative technology for natural wastewater treatment for upgrading WSP effluent. However, the application of RF in the removal of eutrophic nutrients, nitrogen and phosphorus, is very limited. Accordingly, the overall objective of this study was to develop a lowcost RF system for the purpose of enhanced nutrient removal from WSP effluents, which would be able to produce effluents which comply with the requirements of the EU Urban Waste Water Treatment Directive (UWWTD) (911271lEEC) and suitable for small communities. Therefore, a combination system comprising a primary facultative pond and an aerated rock filter (ARF) system-either vertically or horizontally loaded-was investigated at the University of Leeds' experimental station at Esholt Wastewater Treatment Works, Bradford, UK. Blast furnace slag (BFS) and limestone were selected for use in the ARF system owing to their high potential for P removal and their low cost. This study involved three major qperiments: (1) a comparison of aerated vertical-flow and horizontal-flow limestone filters for nitrogen removal; (2) a comparison of aerated limestone + blast furnace slag (BFS) filter and aerated BFS filters for nitrogen and phosphorus removal; and (3) a comparison of vertical-flow and horizontal-flow BFS filters for nitrogen and phosphorus removal. The vertical upward-flow ARF system was found to be superior to the horizontal-flow ARF system in terms of nitrogen removal, mostly thiough bacterial nitrification processes in both the aerated limestone and BFS filter studies. The BFS filter medium (whieh is low-cost) showed a much higher potential in removing phosphortls from pond effluent than the limestone medium. As a result, the combination of a vertical upward-flow ARF system and an economical and effective P-removal filter medium, such as BFS, was found to be an ideal optionfor the total nutrient removal of both nitrogen and phosphorus from wastewater. In parallel with these experiments, studies on the aerated BFS filter effective life and major in-filter phosphorus removal pathways were carried out. From the standard batch experiments of Pmax adsorption capacity of BFS, as well as six-month data collection of daily average P-removal, it was found that the effective life of the aerated BFS filter was 6.5 years. Scanning electron microscopy and X-ray diffraction spectrometric analyses on the surface of BFS, particulates and sediment samples revealed that the apparent mechanisms of P-removal in the filter are adsorption on the amorphous oxide phase of the BFS surface and precipitation within the filter

    Conceptual design optimization study

    Get PDF
    The feasibility of applying multilevel functional decomposition and optimization techniques to conceptual design of advanced fighter aircraft was investigated. Applying the functional decomposition techniques to the conceptual design phase appears to be feasible. The initial implementation of the modified design process will optimize wing design variables. A hybrid approach, combining functional decomposition techniques for generation of aerodynamic and mass properties linear sensitivity derivatives with existing techniques for sizing mission performance and optimization, is proposed
    corecore