579 research outputs found

    Wireless intraoral tongue control of an assistive robotic arm for individuals with tetraplegia

    Get PDF
    Abstract Background For an individual with tetraplegia assistive robotic arms provide a potentially invaluable opportunity for rehabilitation. However, there is a lack of available control methods to allow these individuals to fully control the assistive arms. Methods Here we show that it is possible for an individual with tetraplegia to use the tongue to fully control all 14 movements of an assistive robotic arm in a three dimensional space using a wireless intraoral control system, thus allowing for numerous activities of daily living. We developed a tongue-based robotic control method incorporating a multi-sensor inductive tongue interface. One abled-bodied individual and one individual with tetraplegia performed a proof of concept study by controlling the robot with their tongue using direct actuator control and endpoint control, respectively. Results After 30 min of training, the able-bodied experimental participant tongue controlled the assistive robot to pick up a roll of tape in 80% of the attempts. Further, the individual with tetraplegia succeeded in fully tongue controlling the assistive robot to reach for and touch a roll of tape in 100% of the attempts and to pick up the roll in 50% of the attempts. Furthermore, she controlled the robot to grasp a bottle of water and pour its contents into a cup; her first functional action in 19 years. Conclusion To our knowledge, this is the first time that an individual with tetraplegia has been able to fully control an assistive robotic arm using a wireless intraoral tongue interface. The tongue interface used to control the robot is currently available for control of computers and of powered wheelchairs, and the robot employed in this study is also commercially available. Therefore, the presented results may translate into available solutions within reasonable time

    Qualitative assessment of Tongue Drive System by people with high-level spinal cord injury

    Get PDF
    The Tongue Drive System (TDS) is a minimally invasive, wireless, and wearable assistive technology (AT) that enables people with severe disabilities to control their environments using tongue motion. TDS translates specific tongue gestures into commands by sensing the magnetic field created by a small magnetic tracer applied to the user’s tongue. We have previously quantitatively evaluated the TDS for accessing computers and powered wheelchairs, demonstrating its usability. In this study, we focused on its qualitative evaluation by people with high-level spinal cord injury who each received a magnetic tongue piercing and used the TDS for 6 wk. We used two questionnaires, an after-scenario and a poststudy, designed to evaluate the tongue-piercing experience and the TDS usability compared with that of the sip-and-puff and the users’ current ATs. After study completion, 73% of the participants were positive about keeping the magnetic tongue-barbell in order to use the TDS. All were satisfied with the TDS performance and most said that they were able to do more things using TDS than their current ATs (4.22/5)

    Beyond language: The unspoken sensory-motor representation of the tongue in non-primates, non-human and human primates

    Get PDF
    The English idiom “on the tip of my tongue” commonly acknowledges that something is known, but it cannot be immediately brought to mind. This phrase accurately describes sensorimotor functions of the tongue, which are fundamental for many tongue-related behaviors (e.g., speech), but often neglected by scientific research. Here, we review a wide range of studies conducted on non-primates, non-human and human primates with the aim of providing a comprehensive description of the cortical representation of the tongue's somatosensory inputs and motor outputs across different phylogenetic domains. First, we summarize how the properties of passive non-noxious mechanical stimuli are encoded in the putative somatosensory tongue area, which has a conserved location in the ventral portion of the somatosensory cortex across mammals. Second, we review how complex self-generated actions involving the tongue are represented in more anterior regions of the putative somato-motor tongue area. Finally, we describe multisensory response properties of the primate and non-primate tongue area by also defining how the cytoarchitecture of this area is affected by experience and deafferentation

    Retainer-Free Optopalatographic Device Design and Evaluation as a Feedback Tool in Post-Stroke Speech and Swallowing Therapy

    Get PDF
    Stroke is one of the leading causes of long-term motor disability, including oro-facial impairments which affect speech and swallowing. Over the last decades, rehabilitation programs have evolved from utilizing mainly compensatory measures to focusing on recovering lost function. In the continuing effort to improve recovery, the concept of biofeedback has increasingly been leveraged to enhance self-efficacy, motivation and engagement during training. Although both speech and swallowing disturbances resulting from oro-facial impairments are frequent sequelae of stroke, efforts to develop sensing technologies that provide comprehensive and quantitative feedback on articulator kinematics and kinetics, especially those of the tongue, and specifically during post-stroke speech and swallowing therapy have been sparse. To that end, such a sensing device needs to accurately capture intraoral tongue motion and contact with the hard palate, which can then be translated into an appropriate form of feedback, without affecting tongue motion itself and while still being light-weight and portable. This dissertation proposes the use of an intraoral sensing principle known as optopalatography to provide such feedback while also exploring the design of optopalatographic devices itself for use in dysphagia and dysarthria therapy. Additionally, it presents an alternative means of holding the device in place inside the oral cavity with a newly developed palatal adhesive instead of relying on dental retainers, which previously limited device usage to a single person. The evaluation was performed on the task of automatically classifying different functional tongue exercises from one another with application in dysphagia therapy, whereas a phoneme recognition task was conducted with application in dysarthria therapy. Results on the palatal adhesive suggest that it is indeed a valid alternative to dental retainers when device residence time inside the oral cavity is limited to several tens of minutes per session, which is the case for dysphagia and dysarthria therapy. Functional tongue exercises were classified with approximately 61 % accuracy across subjects, whereas for the phoneme recognition task, tense vowels had the highest recognition rate, followed by lax vowels and consonants. In summary, retainer-free optopalatography has the potential to become a viable method for providing real-time feedback on tongue movements inside the oral cavity, but still requires further improvements as outlined in the remarks on future development.:1 Introduction 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Goals and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Scope and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Basics of post-stroke speech and swallowing therapy 2.1 Dysarthria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Dysphagia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Treatment rationale and potential of biofeedback . . . . . . . . . . . . . . . . . 13 2.4 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 Tongue motion sensing 3.1 Contact-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.1 Electropalatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.2 Manometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1.3 Capacitive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Non-contact based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.1 Electromagnetic articulography . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.2 Permanent magnetic articulography . . . . . . . . . . . . . . . . . . . . 24 3.2.3 Optopalatography (related work) . . . . . . . . . . . . . . . . . . . . . . 25 3.3 Electro-optical stomatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4 Extraoral sensing techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.5 Summary, comparison and conclusion . . . . . . . . . . . . . . . . . . . . . . . 29 4 Fundamentals of optopalatography 4.1 Important radiometric quantities . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.1.1 Solid angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.1.2 Radiant flux and radiant intensity . . . . . . . . . . . . . . . . . . . . . 33 4.1.3 Irradiance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.1.4 Radiance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2 Sensing principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.2.1 Analytical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2.2 Monte Carlo ray tracing methods . . . . . . . . . . . . . . . . . . . . . . 37 4.2.3 Data-driven models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2.4 Model comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.3 A priori device design consideration . . . . . . . . . . . . . . . . . . . . . . . . 41 4.3.1 Optoelectronic components . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.3.2 Additional electrical components and requirements . . . . . . . . . . . . 43 4.3.3 Intraoral sensor layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5 Intraoral device anchorage 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.1.1 Mucoadhesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.1.2 Considerations for the palatal adhesive . . . . . . . . . . . . . . . . . . . 48 5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.2.1 Polymer selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.2.2 Fabrication method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.2.3 Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.2.4 PEO tablets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.2.5 Connection to the intraoral sensor’s encapsulation . . . . . . . . . . . . 50 5.2.6 Formulation evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.3.1 Initial formulation evaluation . . . . . . . . . . . . . . . . . . . . . . . . 54 5.3.2 Final OPG adhesive formulation . . . . . . . . . . . . . . . . . . . . . . 56 5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6 Initial device design with application in dysphagia therapy 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.2 Optode and optical sensor selection . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.2.1 Optode and optical sensor evaluation procedure . . . . . . . . . . . . . . 61 6.2.2 Selected optical sensor characterization . . . . . . . . . . . . . . . . . . 62 6.2.3 Mapping from counts to millimeter . . . . . . . . . . . . . . . . . . . . . 62 6.2.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.3 Device design and hardware implementation . . . . . . . . . . . . . . . . . . . . 64 6.3.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.3.2 Optode placement and circuit board dimensions . . . . . . . . . . . . . 64 6.3.3 Firmware description and measurement cycle . . . . . . . . . . . . . . . 66 6.3.4 Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.3.5 Fully assembled OPG device . . . . . . . . . . . . . . . . . . . . . . . . 67 6.4 Evaluation on the gesture recognition task . . . . . . . . . . . . . . . . . . . . . 69 6.4.1 Exercise selection, setup and recording . . . . . . . . . . . . . . . . . . . 69 6.4.2 Data corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.4.3 Sequence pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.4.4 Choice of classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.4.5 Training and evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7 Improved device design with application in dysarthria therapy 7.1 Device design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.1.1 Design considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.1.2 General system overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.1.3 Intraoral sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.1.4 Receiver and controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 7.1.5 Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.2 Hardware implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 7.2.1 Optode placement and circuit board layout . . . . . . . . . . . . . . . . 87 7.2.2 Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7.3 Device characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 7.3.1 Photodiode transient response . . . . . . . . . . . . . . . . . . . . . . . 91 7.3.2 Current source and rise time . . . . . . . . . . . . . . . . . . . . . . . . 91 7.3.3 Multiplexer switching speed . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.3.4 Measurement cycle and firmware implementation . . . . . . . . . . . . . 93 7.3.5 In vitro measurement accuracy . . . . . . . . . . . . . . . . . . . . . . . 95 7.3.6 Optode measurement stability . . . . . . . . . . . . . . . . . . . . . . . 96 7.4 Evaluation on the phoneme recognition task . . . . . . . . . . . . . . . . . . . . 98 7.4.1 Corpus selection and recording setup . . . . . . . . . . . . . . . . . . . . 98 7.4.2 Annotation and sensor data post-processing . . . . . . . . . . . . . . . . 98 7.4.3 Mapping from counts to millimeter . . . . . . . . . . . . . . . . . . . . . 99 7.4.4 Classifier and feature selection . . . . . . . . . . . . . . . . . . . . . . . 100 7.4.5 Evaluation paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 7.5.1 Tongue distance curve prediction . . . . . . . . . . . . . . . . . . . . . . 105 7.5.2 Tongue contact patterns and contours . . . . . . . . . . . . . . . . . . . 105 7.5.3 Phoneme recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 8 Conclusion and future work 115 9 Appendix 9.1 Analytical light transport models . . . . . . . . . . . . . . . . . . . . . . . . . . 119 9.2 Meshed Monte Carlo method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 9.3 Laser safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 9.4 Current source modulation voltage . . . . . . . . . . . . . . . . . . . . . . . . . 123 9.5 Transimpedance amplifier’s frequency responses . . . . . . . . . . . . . . . . . . 123 9.6 Initial OPG device’s PCB layout and circuit diagrams . . . . . . . . . . . . . . 127 9.7 Improved OPG device’s PCB layout and circuit diagrams . . . . . . . . . . . . 129 9.8 Test station layout drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 Bibliography 152Der Schlaganfall ist eine der häufigsten Ursachen für motorische Langzeitbehinderungen, einschließlich solcher im Mund- und Gesichtsbereich, deren Folgen u.a. Sprech- und Schluckprobleme beinhalten, welche sich in den beiden Symptomen Dysarthrie und Dysphagie äußern. In den letzten Jahrzehnten haben sich Rehabilitationsprogramme für die Behandlung von motorisch ausgeprägten Schlaganfallsymptomatiken substantiell weiterentwickelt. So liegt nicht mehr die reine Kompensation von verlorengegangener motorischer Funktionalität im Vordergrund, sondern deren aktive Wiederherstellung. Dabei hat u.a. die Verwendung von sogenanntem Biofeedback vermehrt Einzug in die Therapie erhalten, um Motivation, Engagement und Selbstwahrnehmung von ansonsten unbewussten Bewegungsabläufen seitens der Patienten zu fördern. Obwohl jedoch Sprech- und Schluckstörungen eine der häufigsten Folgen eines Schlaganfalls darstellen, wird diese Tatsache nicht von der aktuellen Entwicklung neuer Geräte und Messmethoden für quantitatives und umfassendes Biofeedback reflektiert, insbesondere nicht für die explizite Erfassung intraoraler Zungenkinematik und -kinetik und für den Anwendungsfall in der Schlaganfalltherapie. Ein möglicher Grund dafür liegt in den sehr strikten Anforderungen an ein solche Messmethode: Sie muss neben Portabilität idealerweise sowohl den Kontakt zwischen der Zunge und dem Gaumen, als auch die dreidimensionale Bewegung der Zunge in der Mundhöhle erfassen, ohne dabei die Artikulation selbst zu beeinflussen. Um diesen Anforderungen gerecht zu werden, wird in dieser Dissertation das Messprinzip der Optopalatographie untersucht, mit dem Schwerpunkt auf der Anwendung in der Dysarthrie- und Dysphagietherapie. Dies beinhaltet auch die Entwicklung eines entsprechenden Gerätes sowie dessen Befestigungsmethode in der Mundhöhle über ein dediziertes Mundschleimhautadhäsiv. Letzteres umgeht das bisherige Problem der notwendigen Anpassung eines solchen intraoralen Gerätes an einen einzelnen Nutzer. Für die Anwendung in der Dysphagietherapie erfolgte die Evaluation anhand einer automatischen Erkennung von Mobilisationsübungen der Zunge, welche routinemäßig in der funktionalen Dysphagietherapie durchgeführt werden. Für die Anwendung in der Dysarthrietherapie wurde eine Lauterkennung durchgeführt. Die Resultate bezüglich der Verwendung des Mundschleimhautadhäsives suggerieren, dass dieses tatsächlich eine valide Alternative zu den bisher verwendeten Techniken zur Befestigung intraoraler Geräte in der Mundhöhle darstellt. Zungenmobilisationsübungen wurden über Probanden hinweg mit einer Rate von 61 % erkannt, wogegen in der Lauterkennung Langvokale die höchste Erkennungsrate erzielten, gefolgt von Kurzvokalen und Konsonanten. Zusammenfassend lässt sich konstatieren, dass das Prinzip der Optopalatographie eine ernstzunehmende Option für die intraorale Erfassung von Zungenbewegungen darstellt, wobei weitere Entwicklungsschritte notwendig sind, welche im Ausblick zusammengefasst sind.:1 Introduction 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Goals and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Scope and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Basics of post-stroke speech and swallowing therapy 2.1 Dysarthria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Dysphagia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Treatment rationale and potential of biofeedback . . . . . . . . . . . . . . . . . 13 2.4 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 Tongue motion sensing 3.1 Contact-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.1 Electropalatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.2 Manometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1.3 Capacitive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Non-contact based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.1 Electromagnetic articulography . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.2 Permanent magnetic articulography . . . . . . . . . . . . . . . . . . . . 24 3.2.3 Optopalatography (related work) . . . . . . . . . . . . . . . . . . . . . . 25 3.3 Electro-optical stomatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4 Extraoral sensing techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.5 Summary, comparison and conclusion . . . . . . . . . . . . . . . . . . . . . . . 29 4 Fundamentals of optopalatography 4.1 Important radiometric quantities . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.1.1 Solid angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.1.2 Radiant flux and radiant intensity . . . . . . . . . . . . . . . . . . . . . 33 4.1.3 Irradiance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.1.4 Radiance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2 Sensing principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.2.1 Analytical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2.2 Monte Carlo ray tracing methods . . . . . . . . . . . . . . . . . . . . . . 37 4.2.3 Data-driven models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.2.4 Model comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.3 A priori device design consideration . . . . . . . . . . . . . . . . . . . . . . . . 41 4.3.1 Optoelectronic components . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.3.2 Additional electrical components and requirements . . . . . . . . . . . . 43 4.3.3 Intraoral sensor layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5 Intraoral device anchorage 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.1.1 Mucoadhesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.1.2 Considerations for the palatal adhesive . . . . . . . . . . . . . . . . . . . 48 5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.2.1 Polymer selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.2.2 Fabrication method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.2.3 Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.2.4 PEO tablets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.2.5 Connection to the intraoral sensor’s encapsulation . . . . . . . . . . . . 50 5.2.6 Formulation evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.3.1 Initial formulation evaluation . . . . . . . . . . . . . . . . . . . . . . . . 54 5.3.2 Final OPG adhesive formulation . . . . . . . . . . . . . . . . . . . . . . 56 5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6 Initial device design with application in dysphagia therapy 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.2 Optode and optical sensor selection . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.2.1 Optode and optical sensor evaluation procedure . . . . . . . . . . . . . . 61 6.2.2 Selected optical sensor characterization . . . . . . . . . . . . . . . . . . 62 6.2.3 Mapping from counts to millimeter . . . . . . . . . . . . . . . . . . . . . 62 6.2.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.3 Device design and hardware implementation . . . . . . . . . . . . . . . . . . . . 64 6.3.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.3.2 Optode placement and circuit board dimensions . . . . . . . . . . . . . 64 6.3.3 Firmware description and measurement cycle . . . . . . . . . . . . . . . 66 6.3.4 Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.3.5 Fully assembled OPG device . . . . . . . . . . . . . . . . . . . . . . . . 67 6.4 Evaluation on the gesture recognition task . . . . . . . . . . . . . . . . . . . . . 69 6.4.1 Exercise selection, setup and recording . . . . . . . . . . . . . . . . . . . 69 6.4.2 Data corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.4.3 Sequence pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.4.4 Choice of classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.4.5 Training and evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7 Improved device design with application in dysarthria therapy 7.1 Device design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.1.1 Design considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.1.2 General system overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.1.3 Intraoral sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.1.4 Receiver and controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 7.1.5 Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.2 Hardware implementation . . . . . . . . . . . . . . . . . . . . .

    Mimicking the Impact of Infant Tongue Peristalsis on Behavior of Solid Oral Dosage Forms Administered During Breastfeeding.

    Get PDF
    An in vitro simulation system was developed to study the effect of an infant's peristaltic tongue motion during breastfeeding on oral rapidly disintegrating tablets in the mouth, for use in rapid product candidate screening. These tablets are being designed for use inside a modified nipple shield worn by a mother during breastfeeding, a proposed novel platform technology to administer drugs and nutrients to breastfeeding infants. In this study, the release of a model compound, sulforhodamine B, from tablet formulations was studied under physiologically relevant forces induced by compression and rotation of a tongue mimic. The release profiles of the sulforhodamine B in flowing deionized water were found to be statistically different using 2-way ANOVA with matching, when tongue mimic rotation was introduced for 2 compression levels representing 2 tongue strengths (p = 0.0013 and p < 0.0001 for the lower and higher compression settings, respectively). Compression level was found to be a significant factor for increasing model compound release at rotational rates representing nonnutritive breastfeeding (p = 0.0162). This novel apparatus is the first to simulate the motion and pressures applied by the tongue and could be used in future infant oral product development.This work was made possible through the generous support of the Saving Lives at Birth partners: the United States Agency for International Development (USAID), the Government of Norway, the Bill & Melinda Gates Foundation (grant number: OPP1129832), Grand Challenges Canada, and the UK Department for International Development (DFID); as well as the Gates Cambridge Trust.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.xphs.2016.08.00

    Early oral-motor interventions for pediatric feeding problems: What, when and how

    Get PDF
    Children with developmental delays often have feeding difficulties resulting from oral-motor problems. Based on both clinical experience and a review of published studies, oral-motor interventions have been shown to be effective in improving the oral function of preterm infants and children with neuromotor disorders, such as cerebral palsy. However, oral-motor problems may be under identified in other populations of children with developmental difficulties. The purpose of this paper is to provide a conceptual framework for understanding oral-motor skill development and problems that can occur in any infant and young child and to review oral-motor treatment techniques and their empirical support

    Mimicking the impact of infant tongue peristalsis on behaviour of solid oral dosage forms administered during breastfeeding

    Get PDF
    An in vitro simulation system was developed to study the effect of an infant’s peristaltic tongue motion during breastfeeding on oral rapidly disintegrating tablets in the mouth, for use in rapid product candidate screening. These tablets are being designed for use inside a modified nipple shield worn by a mother during breastfeeding, a proposed novel platform technology to administer drugs and nutrients to breastfeeding infants. In this study, the release of a model compound, sulforhodamine B, from tablet formulations was studied under physiologically relevant forces induced by compression and rotation of a tongue mimic. The release profiles of the sulforhodamine B in flowing deionised water were found to be statistically different using 2-way ANOVA with matching, when tongue mimic rotation was introduced for two compression levels representing two tongue strengths (P=0.0013 and P<0.0001 for the lower and higher compression settings, respectively). Compression level was found to be a significant factor for increasing model compound release at rotational rates representing non-nutritive breastfeeding (P=0.0162). This novel apparatus is the first to simulate the motion and pressures applied by the tongue, and could be used in future infant oral product development

    Abnormal Nutritive Sucking as an Indicator of Neonatal Brain Injury

    Get PDF
    A term neonate is born with the ability to suck; this neuronal network is already formed and functional by 28 weeks gestational age and continues to evolve into adulthood. Because of the necessity of acquiring nutrition, the complexity of the neuronal network needed to suck, and neuroplasticity in infancy, the skill of sucking has the unique ability to give insight into areas of the brain that may be damaged either during or before birth. Interpretation of the behaviors during sucking shows promise in guiding therapies and how to potentially repair the damage early in life, when neuroplasticity is high. Sucking requires coordinated suck-swallow-breathe actions and is classified into two basic types, nutritive and non-nutritive. Each type of suck has particular characteristics that can be measured and used to learn about the infant\u27s neuronal circuitry. Basic sucking and swallowing are present in embryos and further develop to incorporate breathing ex utero. Due to the rhythmic nature of the suck-swallow-breathe process, these motor functions are controlled by central pattern generators. The coordination of swallowing, breathing, and sucking is an enormously complex sensorimotor process. Because of this complexity, brain injury before birth can have an effect on these sucking patterns. Clinical assessments allow evaluators to score the oral-motor pattern, however, they remain ultimately subjective. Thus, clinicians are in need of objective measures to identify the specific area of deficit in the sucking pattern of each infant to tailor therapies to their specific needs. Therapeutic approaches involve pacifiers, cheek/chin support, tactile, oral kinesthetic, auditory, vestibular, and/or visual sensorimotor inputs. These therapies are performed to train the infant to suck appropriately using these subjective assessments along with the experience of the therapist (usually a speech therapist), but newer, more objective measures are coming along. Recent studies have correlated pathological sucking patterns with neuroimaging data to get a map of the affected brain regions to better inform therapies. The purpose of this review is to provide a broad scope synopsis of the research field of infant nutritive and non-nutritive feeding, their underlying neurophysiology, and relationship of abnormal activity with brain injury in preterm and term infants
    • …
    corecore