research

Mimicking the impact of infant tongue peristalsis on behaviour of solid oral dosage forms administered during breastfeeding

Abstract

An in vitro simulation system was developed to study the effect of an infant’s peristaltic tongue motion during breastfeeding on oral rapidly disintegrating tablets in the mouth, for use in rapid product candidate screening. These tablets are being designed for use inside a modified nipple shield worn by a mother during breastfeeding, a proposed novel platform technology to administer drugs and nutrients to breastfeeding infants. In this study, the release of a model compound, sulforhodamine B, from tablet formulations was studied under physiologically relevant forces induced by compression and rotation of a tongue mimic. The release profiles of the sulforhodamine B in flowing deionised water were found to be statistically different using 2-way ANOVA with matching, when tongue mimic rotation was introduced for two compression levels representing two tongue strengths (P=0.0013 and P<0.0001 for the lower and higher compression settings, respectively). Compression level was found to be a significant factor for increasing model compound release at rotational rates representing non-nutritive breastfeeding (P=0.0162). This novel apparatus is the first to simulate the motion and pressures applied by the tongue, and could be used in future infant oral product development

    Similar works