1,213 research outputs found

    Mobile Emergency, an Emergency Support System for Hospitals in Mobile Devices: Pilot Study

    Get PDF
    BACKGROUND: Hospitals are vulnerable to natural disasters, man-made disasters, and mass causalities events. Within a short time, hospitals must provide care to large numbers of casualties in any damaged infrastructure, despite great personnel risk, inadequate communications, and limited resources. Communications are one of the most common challenges and drawbacks during in-hospital emergencies. Emergency difficulties in communicating with personnel and other agencies are mentioned in literature. At the moment of emergency inception and in the earliest emergency phases, the data regarding the true nature of the incidents are often inaccurate. The real needs and conditions are not yet clear, hospital personnel are neither efficiently coordinated nor informed on the real available resources. Information and communication technology solutions in health care turned out to have a great positive impact both on daily working practice and situations. OBJECTIVE: The objective of this paper was to find a solution that addresses the aspects of communicating among medical personnel, formalizing the modalities and protocols and the information to guide the medical personnel during emergency conditions with a support of a Central Station (command center) to cope with emergency management and best practice network to produce and distribute intelligent content made available in the mobile devices of the medical personnel. The aim was to reduce the time needed to react and to cope with emergency organization, while facilitating communications. METHODS: The solution has been realized by formalizing the scenarios, extracting, and identifying the requirements by using formal methods based on unified modeling language (UML). The system and was developed using mobile programming under iOS Apple and PHP: Hypertext Preprocessor My Structured Query Language (PHP MySQL). Formal questionnaires and time sheets were used for testing and validation, and a control group was used in order to estimate the reduction of time needed to cope with emergency cases. First, we have tested the usability and the functionalities of the solution proposed, then a real trial was performed to assess the reduction in communication time and the efficiency of the solution with respect to a case without Mobile Emergency tools. RESULTS: The solution was based on the development of a mobile emergency application and corresponding server device to cope with emergencies and facilitate all the related activities and communications, such as marking the position, contacting people, and recovering the exits information. The solution has been successfully tested within the Careggi Hospital, the largest medical infrastructure in Florence and Tuscany area in Italy, thus demonstrating the validity of the identified modalities, procedures, and the reduction in the time needed to cope with the emergency conditions. The trial was not registered as the test was conducted in realistic but simulated emergency conditions. CONCLUSIONS: By analyzing the requirements for developing a mobile app, and specifically the functionalities, codes, and design of the Mobile Emergency app, we have revealed the real advantages of using mobile emergency solutions compared to other more traditional solutions to effectively handle emergency situations in hospital settings

    Towards pervasive computing in health care – A literature review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The evolving concepts of pervasive computing, ubiquitous computing and ambient intelligence are increasingly influencing health care and medicine. Summarizing published research, this literature review provides an overview of recent developments and implementations of pervasive computing systems in health care. It also highlights some of the experiences reported in deployment processes.</p> <p>Methods</p> <p>There is no clear definition of pervasive computing in the current literature. Thus specific inclusion criteria for selecting articles about relevant systems were developed. Searches were conducted in four scientific databases alongside manual journal searches for the period of 2002 to 2006. Articles included present prototypes, case studies and pilot studies, clinical trials and systems that are already in routine use.</p> <p>Results</p> <p>The searches identified 69 articles describing 67 different systems. In a quantitative analysis, these systems were categorized into project status, health care settings, user groups, improvement aims, and systems features (i.e., component types, data gathering, data transmission, systems functions). The focus is on the types of systems implemented, their frequency of occurrence and their characteristics. Qualitative analyses were performed of deployment issues, such as organizational and personnel issues, privacy and security issues, and financial issues. This paper provides a comprehensive access to the literature of the emerging field by addressing specific topics of application settings, systems features, and deployment experiences.</p> <p>Conclusion</p> <p>Both an overview and an analysis of the literature on a broad and heterogeneous range of systems are provided. Most systems are described in their prototype stages. Deployment issues, such as implications on organization or personnel, privacy concerns, or financial issues are mentioned rarely, though their solution is regarded as decisive in transferring promising systems to a stage of regular operation. There is a need for further research on the deployment of pervasive computing systems, including clinical studies, economic and social analyses, user studies, etc.</p

    Perception gaps and the adoption of information technology in the clinical healthcare environment

    Get PDF
    Implementation of information systems has lagged in many areas of clinical healthcare for a variety of reasons. Economics, data complexity and resistance are among the often quoted roadblocks. Research suggests that physicians play a major part in the adoption, use and diffusion of information technology (IT) in clinical settings. There are also other healthcare professionals, clinical and non-clinical, who play important roles in making decisions about the acquisition of information technology. In addition to these groups there are information technology professionals providing the services required within the healthcare field. Finally within this group are those IT professionals who have sufficient cross training to understand specific needs. Each member of these groups brings a different perspective to both needs assessments as well as implementation of clinical systems. This study considers the idea that there are preconceived differences of opinion of the information needs of clinical healthcare by the clinical community and the information technology professionals. Are these differences significant enough to create a barrier to implementation? A questionnaire was developed from preliminary data to assess multiple parameters which could impact implementation of a clinical information technology solution. A Web of System Performance (WOSP) model was created to map each of the following eight areas of concern: functionality, usability, extendibility, connectivity, flexibility, reliability, privacy and security. Responses to the questions were related to professional roles, age and experience. There were no differences seen in the perceived need for secure systems by either healthcare workers or IT professionals. The variance of perceived need was greatest among the various non-physician healthcare workers when compared to physicians or information technology professions. This was a consistent pattern for the otherparameters with the exception of the usability of the electronic health record. In this area all groups disagreed significantly. The study, though limited by its small sample, still suggests that the resistance by healthcare professionals is not a significant barrier to successful information technology implementation

    A user-centred evaluation of a mobile phone-based interactive voice response system to support infectious disease surveillance and access to healthcare for sick children in Ghana: users’ experiences, challenges and opportunities for large-scale application. Part of a concept and pilot study for mobile phone-based Electronic Health Information and Surveillance System (eHISS) for Africa

    Get PDF
    Brinkel J. A user-centred evaluation of a mobile phone-based interactive voice response system to support infectious disease surveillance and access to healthcare for sick children in Ghana: users’ experiences, challenges and opportunities for large-scale application. Part of a concept and pilot study for mobile phone-based Electronic Health Information and Surveillance System (eHISS) for Africa. Bielefeld: Universität Bielefeld; 2020.Digital Health offers tremendous potential to change the face of health systems in all countries. Although the application of digital technologies in the health sector has become central to global health thinking, various implementation barriers still exist. One of the most significant is the process of user acceptance and adoption of new interventions, which still remains a neglected research area in sub-Saharan Africa. The synopsis is a synthesis of the findings of a three-year research study embedded within a larger research consortium that developed and piloted a mobile phone-based Electronic Health Information and Surveillance System for sub-Saharan Africa (eHISS) in Ghana. The system aimed to support sick children to assess the disease severity, to advice appropriate treatment and to collect data on the occurrence of symptom clusters. The thesis evaluated the usability and acceptance among users of the mobile health (mHealth) system (caregivers of children) by soliciting their views on their experiences while using the system. The doctoral thesis followed a human-centred design (HCD) circle and consisted of the following research activities; (i) the assessment of the state of research, (ii) the innovative field test of a prototype of the eHISS system and an assessment of users’ needs to drive the design, (iii) the evaluation of the clinical decision algorithm as backbone of the electronic system and (iv) the evaluation of experiences with the system after a six-month pilot phase of the system. A manuscript was developed from each research activity for publication, thus making a total of four papers that form the empirical basis of this thesis. Results showed that users are generally open to mHealth and interested in new technologies, and comprehensive knowledge on critical factors favouring and disfavouring the integration of the system in the daily life of participants, and suggestions on how the system could be improved has been gained. The thesis thus confirmed and highlighted the key role of user experiences in the design process of new mHealth approaches, and provided insights on how to develop and evaluate mobile health approaches from the user perspective. Based on the results of the user evaluation, two possible directions for the future of eHISS have been developed. We further conclude that programs and initiatives must be guided by robust strategies to overcome existing barriers for implementation. Like all digital health interventions, the presented eHISS system is not a silver bullet and has significant limitations, but taking the requirements discussed in the thesis into consideration we believe that systems developed based on the eHISS experiences in future can make a real impact on health service delivery and disease response

    A Wearable Platform for Patient Monitoring during Mass Casualty Incidents

    Get PDF
    Based on physiological data, intelligent algorithms can assist with the classification and recognition of the most severely impaired victims. This dissertation presents a new sensorbased triage platform with the main proposal to join different sensor and communications technologies into a portable device. This new device must be able to assist the rescue units along with the tactical planning of the operation. This dissertation discusses the implementation and the evaluation of the platform

    A Wearable Platform for Patient Monitoring during Mass Casualty Incidents

    Get PDF
    Based on physiological data, intelligent algorithms can assist with the classification and recognition of the most severely impaired victims. This book presents a new sensorbased triage platform with the main proposal to join different sensor and communications technologies into a portable device. This new device must be able to assist the rescue units along with the tactical planning of the operation. This work discusses the implementation and the evaluation of the platform

    Mobile Health Technologies

    Get PDF
    Mobile Health Technologies, also known as mHealth technologies, have emerged, amongst healthcare providers, as the ultimate Technologies-of-Choice for the 21st century in delivering not only transformative change in healthcare delivery, but also critical health information to different communities of practice in integrated healthcare information systems. mHealth technologies nurture seamless platforms and pragmatic tools for managing pertinent health information across the continuum of different healthcare providers. mHealth technologies commonly utilize mobile medical devices, monitoring and wireless devices, and/or telemedicine in healthcare delivery and health research. Today, mHealth technologies provide opportunities to record and monitor conditions of patients with chronic diseases such as asthma, Chronic Obstructive Pulmonary Diseases (COPD) and diabetes mellitus. The intent of this book is to enlighten readers about the theories and applications of mHealth technologies in the healthcare domain
    • …
    corecore